Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Title Principal Supervisor Research Institutes Project Summary
Low Power Indoor Positioning Methods

Professor Tughrul Arslan

Integrated Micro and Nano Systems

The project aims to develop a low power low foot-print mobile positioning technology that operates seamlessly both indoors and in urban areas.

Development of an Instrument for Rapidly Detecting Cryptosporidium in Drinking Water

Dr Robert Henderson

Integrated Micro and Nano Systems

Cryptosporidium is a waterborne microorganism which causes severe diarrhoea and can be fatal for immuno-compromised individuals, infants and young children. It is estimated that Cryptosporidium contamination of drinking water results in 250-500 million cases each year in developing countries and 60,000 in the UK alone. The Cryptosporidium organism has a thick outer wall that is resistant to many conventional water treatment methods, and outbreaks are a problem even in the developed world, negatively impacting population health and economic development - daily monitoring of the water supply is required.

Current Cryptosporidium detection methods are expensive and highly time-consuming - requiring microscopic examination by skilled scientists. Furthermore, these techniques lack species and viability information, which is essential to make well-informed public health decisions. There is, therefore, a pressing need for an instrument capable of rapidly analysing drinking water samples for the presence, species and viability of Cryptosporidium microorganisms.

Pressure-Tuning Interactions in Molecule-Based Magnets

Professor Konstantin Kamenev

Materials and Processes

In optimizing the properties of functional materials it is essential to understand in detail how structure influences properties. Identification of the most important structural parameters is time-consuming and usually investigated by preparing many different chemical modifications of a material, determining their crystal structures, measuring their physical properties and then looking for structure-property correlations. It is also necessary to assume that the chemical modifications have no influence other than to distort the structure, which is often not the case.

Influence of snow structure and properties on the grip of winter tyres

Dr Jane Blackford

Materials and Processes

The aim of this project is to investigate the friction of rubber and tyre treads on snow. It is a collaborative project with Michelin. We use tribological testing and materials characterisation techniques in a specially designed cold room facility to do this. Ultimately this knowledge will be used to improve tyre traction on snow.

Ice-Rubber Friction for Tyres

Dr Jane Blackford

Materials and Processes

The aim of this project is to gain a better understanding of the nature of the interface between rubber and ice. It is a collaborative project with Michelin. We use tribological testing and materials characterisation techniques in a specially designed cold room facility to do this. Ultimately this knowledge will be used to improve tyre traction on ice.

High Performance Computing Support for United Kingdom Consortium on Turbulent Reacting Flows (UKCTRF)

Dr Stephen Welch

Infrastructure and Environment

The proposed UK Consortium on Turbulent Reacting Flows will perform high-fidelity computational simulations (i.e. Reynolds Averaged Navier-Stokes simulations (RANS), Large Eddy Simulation (LES) and Direct Numerical Simulations (DNS)) by utilising national High Performance Computing (HPC) resources to address the challenges related to energy through the fundamental physical understanding and modelling of turbulent reacting flows. Engineering applications range from the formulation of reliable fire-safety measures to the design of energy-efficient and environmentally-friendly internal combustion engines and gas turbines.

FireComp: Modelling the thermo-mechanical behaviour of high pressure vessel in composite materials when exposed to fire conditions

Dr Stephen Welch

Infrastructure and Environment

Hydrogen is expected to be highly valuable energy carrier for the 21st century as it should participate in answering main societal and economical concerns. To exploit its benefits at large scale, further research and technological developments are required. In particular, the storage of hydrogen must be secured. Even if burst in service of pressure vessels in composite material is very unlikely, when exposed to a fire, they present safety challenges imposing to correctly size their means of protection.

Engineering the Byzantine water supply: procurement, construction and operation

Dr Simon Smith

Infrastructure and Environment

This innovative research combines construction process modelling and contemporary network software to gain new insights to conceptualise the construction and distribution of the city’s hydraulic networks.

Challenging RISK: Achieving Resilience by Integrating Societal and Technical Knowledge

Professor Luke Bisby

Infrastructure and Environment

This project is concerned with socially integrated mitigation of multiple structural risks in the urban environment, with a focus on the linked risks of earthquake and fire. Fire is the largest contributor to building damage following earthquakes. To date, this research area has largely been ignored as it crosses the boundaries between the knowledge areas of earthquake and fire safety engineering. The combination of factors adds to the challenges in risk estimation already existing in each distinct area. There is currently no universally accepted method for accounting for the effect of strengthening practices on building vulnerability to earthquakes (let alone earthquakes followed by fire). In the case of fire safety engineering, few credible techniques for damage estimation or risk-based design currently exist due to a lack of requisite input data. This project will develop, through large scale structural testing and computational analysis, new technical engineering solutions to these problems. And, for the first time, these technical engineering solutions will be developed explicitly accounting for the social context within which they are to be enacted.

Behaviour, attitutde and perception of safety risk in a nationally and culturally diverse workforce

Dr Simon Smith

Infrastructure and Environment

Considering the cultural and national backgrounds of construction workers and management to understand attitudes and perception of construction safety risk.

Pages

Subscribe to Research Projects