All Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute or Research Theme.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
  • Present infrastructure service delivery, characterized by isolated supply streams for an uncontrolled demand, is uneconomical, inefficient, and ultimately unsustainable. What kinds of alternatives can be identified and implemented? In this project, we research and promote the establishment of Multi-Utility Service Companies, or MUSCos.

    Research Themes: 

    • Power Systems
  • Our goal is to test the feasibility of producing low molecular weight aromatic chemical feedstocks from the lignin that is currently a waste product from wood processing and paper manufacturing, so that it may be used to manufacture useful products. We propose to develop a "front-end" to optimise the conversion of lignin into its constitutive aromatic chemical building blocks. This technology may be bolted to any "back-end" in a biorefinery to produce bioplastics, biosurfactants, biomaterials and so on. By exploring and optimising a technology which allows for the rapid tuning of bacteria or fungi for exploiting the conversion of lignin, we stand to limit waste by being able to optimise the degradation products being used as chemical feedstocks and diversify the range of end-bioproducts possible.

    Research Themes: 

    • Bioengineering
  • Usually associated with display technology, liquid crystals also have many other applications and uses.  In this research project we are developing liquid crystal lasers, capable of broad wavelength-tuning, multiple simultaneous colour emissions, and highly customisable outputs, all within a small, portable and low-cost architecture.  We are also seeking to integrate liquid crystal lasers into new photonic systems and applications, such as biomedical imaging (e.g. fluorescence microscopy, flow cytometry), digital holographic projection, and 2D & 3D displays.

    Research Themes: 

    • Materials and Structures
    • Optical Systems and Materials
    • Sensors
    Lasing in liquid crystals (green pump input, red lasing output)
  • The project aims to develop a low power low foot-print mobile positioning technology that operates seamlessly both indoors and in urban areas.

    Research Themes: 

    • Smart Wireless Devices and Systems
  • MARINET, the Marine Renewables Infrastructure Network, is a network of research centres and organisations that are working together to accelerate the development of marine renewable energy technologies - wave, tidal and offshore-wind. It is co-financed by the European Commission specifically to enhance integration and utilisation of European marine renewable energy research infrastructures and expertise. MARINET offers periods of free-of-charge access to world-class R&D facilities & expertise and conducts joint activities in parallel to standardise testing improve testing capabilities and enhance training & networking.

     

    Research Themes: 

    • Offshore Renewable Energy
    MARINET logo
  • The aim of this Innovative Training Network is to train a new generation of creative, entrepreneurial and innovative early stage researchers (ESRs) in the research area of measurement and estimation of signals using knowledge or data about the underlying structure.

    Research Themes: 

    • Signal and Image Processing
  • The spectrum crunch is a global phenomenon, where wireless networks constrained by scarce spectrum resource cannot keep pace with the explosion in mobile broadband use, particularly at a time when smartphones and tablets are becoming even more prevalent and heavily used. Every new opportunity has to be maximally exploited to cope with this spectrum deficit and meet the demands of explosive broadband usage by pushing more data through existing spectrum. Massive multiple-input multiple-output (MIMO), an advanced antenna technology only developed in 2010 offers one such opportunity.

    Research Themes: 

    • Communications
  • Pore wetting is a principal control of the multiphase flows through porous media. However, the contact angle measurement on other than flat surfaces still remains a challenge. In order to indicate the wetting in a small pore, we developed a new pore contact angle measurement technique to directly measure the contact angles of fluids and gas/liquid/supercritical CO2 in micron-sized pores under ambient and reservoir conditions in this study, as well as the effect of chemical functional groups on pore contact angle.

    Research Themes: 

    • Multiphase Flows and Transport Phenomena
  • Membrane processes are a promising alternative to the more classical post-combustion capture technologies due to the reduced maintenance of the process, the absence of dangerous solvents and their smaller footprint. This project aims at supporting the development of new mixed matrix membranes for post-combustion applications. Mixed matrix membranes (MMMs) are composite materials formed by embedding inorganic fillers into a polymeric matrix in order to overcome the upper bound and combine the characteristics of the two solid phases: mechanical properties, economical processing capabilities and permeability of the polymer and selectivity of the filler. Despite several studies on the concept, the interactions between the two phases and their effect on the transport properties are not well understood. Yet, this fundamental knowledge is crucial in order to design the reliable materials needed for real-world-applications.

    Research Themes: 

    • Carbon Capture and Separation Processes

Pages

Subscribe to All Research Projects