Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Titlesort descending Principal Supervisor Research Institutes Project Summary
The Effect of Unicompartmental Knee Replacement Tibial Component Design on Proximal Tibial Strain and Ongoing Pain: A study of clinical and radiological outcome and finite element analysis

Dr Pankaj Pankaj

Bioengineering

Knee osteoarthritis (OA) is a common degenerative joint disease affecting 12% of the over 60s symptomatically. In approximately 20% of cases this is isolated to the medial compartment of the knee and could be managed with unicompartmental knee replacement (UKR) rather than total knee replacement (TKR). However, the survivorship of UKRs is globally inferior to that of TKRs. Unexplained pain is the second commonest cause for revision of UKR, but this is not the case with TKRs. We hypothesised that elevated proximal tibial strain under medial UKR implants may be a cause of this unexplained pain. The aims of this study are therefore to determine the effect of medial UKR tibial component design on proximal tibial strain and pain.

The First Open-Source Software for Non-Continuum Flows in Engineering

Prof Jason Reese

Multiscale Thermofluids

This project is both multi-scale and multi-disciplinary, and spans research areas across physics, mechanical engineering, computer science and chemical engineering. Our aim is to produce, for the first time, a general, robust and efficient open-source code for the simulation of non-continuum flows for engineering applications.

The Sc2.0 UK Genome Engineering Resource (SUGER)

Professor Alistair Elfick

Bioengineering

Building the world's first synthetic eukaryotic genome together.

ThermaPower - Thermal Management of High Power Microsystems Using Multiphase Flows

Professor Khellil Sefiane

Multiscale Thermofluids

Increased functionality and power consumption of microdevices and high power electronics has come at a cost: power dissipation and heating. This heat must be dissipated to ensure reliable operation of such devices in both earthly and reduced gravity environments (eg space industry), without adversely affecting their performance. With a highly competitive world market, worth tens of billions of Euros, it is imperative for EU to gain a competitive position in this field (currently led by USA and China).

ThermaSMART

Dr Prashant Valluri

Integrated Micro and Nano Systems, Materials and Processes, Multiscale Thermofluids

Project ThermaSMART is an international and intersectoral network of organisations working on a joint research programme in the area of phase-change cooling of high-power electronic devices.

TorqTidal: Mitigating Torque Pulsations in Tidal Current Turbines

Dr Jonathan Shek

Energy Systems

TorqTidal seeks to provide control strategies for tidal current turbines that will reduce the risk of failure and increase the lifetime of device components without increasing capital costs. This will act to increase investor confidence and drive down the LCOE, which is a key step in helping the UK to exploit its significant tidal energy resource.

Towards electrochemically controlled nucleic acid-amplification strategies

Professor Anthony Walton

Integrated Micro and Nano Systems

Nucleic hybridisation is core to many biological processes and protocols used in molecular biology such as nucleic acid amplification, e.g. by PCR. This project aims to radically simplify nucleic acid amplification by driving the reaction via means of electrochemistry. To fulfil this aim, specialised expertise in biosensors, physical chemistry, biophysics and microsystems engineering is brought together.

Transporting, handling and storing behaviour of iron ore fines

Prof. Jin Ooi

Infrastructure and Environment

This project attempts to deal with the challenges associated with handling and storage of cohesive solids in the mining industry. An adhesive-frictional model has been recently developed for DEM simulation of cohesive particles at the University of Edinburgh. This project will exploit the new method for modelling cohesive particulates for specific problems, such as effect of fines in silo discharge and the effect of time consolidation.

UDRC: University Defence Research Collaboration in Signal Processing

Prof Mike Davies

Imaging, Data and Communications

Signal Processing is fundamental to the capability of all modern sensor weapon systems and the Defence Technology Strategy identified the development and application of signal processing techniques as high priority technical challenges within the MOD research agenda.

The UDRC is a leading partnership between industry, defence and is academia led and focuses on sensor signal processing for defence.

Using short-ranged repulsion to tune suspension viscosity and shear thickening

Dr. Jin Sun

Infrastructure and Environment

Dense suspensions of solid particles exhibit rich and fascinating flow behaviour.

Pages

Subscribe to Research Projects