Chemical Engineering

If we stretch a material, such as a rubber band, in one direction we observe it contracts in the lateral direction. However, a material can be designed to be counterintuitive so that when it is stretched in one direction it also expands in the lateral direction. A material with this unusual property is called a mechanical metamaterial (an auxetic material). The pore sizes in such materials can therefore be changed by strain. A mechanical metamaterial with a hydrophobic surface can be converted by strain to a super-water-repellent material or to a porous material.

In this project, the focus will be on creating hydrophobic mechanical metamaterials using foams and characterizing their properties when in contact with different liquids. The project will also consider a possible application in the programmable separation of oil-water mixtures and de-fouling of materials. The project will investigate whether strain might be used as a switch to allow oil to either be blocked to to pass through the material and whether strain can be used to release particulates blocking the material when it is used as a filter.

The PhD researcher will be part of the Wetting, Interfacial Sciences and Engineering Group within the Institute for Multiscale Thermofliuds. You will join a vibrant community of PhD students, postdoctoral research associates and academics working in various aspects of surfaces and wetting. The student will attain skills in materials preparation, surface coating, construction of experimental set-ups, and measurement techniques and characterization techniques.

It is expected that the applicant will have a good degree in chemical engineering, mechanical engineering, materials science, physics, or a related discipline.

Please note that if a suitable candidate is found prior to the closing date, then the position will be closed and the advert will be removed.

For further information on this project, please refer to the following website: http://www.naturesraincoats.com/

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree. Further information on English language requirements for EU/Overseas applicants.

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere.

Further information and other funding options.

Off

A wide spectrum of target thermoplastic materials can be manufactured by tailoring polymer blends to achieve particular combinations of end-user performance (e.g. mechanical, electrical, structural support) properties, important in various industrial sectors, especially in extreme-condition environments. These polymeric material classes include the widely used polyolefins (PE, PP), but also others derived from higher-MW monomers (PS, PVC, PVP, PC, PTFE, etc. ). The key challenge here is to computationally predict (and experimentally confirm) optimal blend compositions which can be manufactured reasonably easily (high processability via extrusion, blow moulding, etc.), in order to achieve formulated products which achieve (or exceed) the said end-user properties, under reasonable total (fixed+operating) cost per unit mass.

Over the years, the UoE Polymer Engineering Laboratory has compiled a wealth of experimental datasets for many blend-condition combinations (virgin/recycled feedstocks, input molecules, temperatures, extrusion/moulding settings, product macro-dimensions) e.g. Polymers 2023, 15(21), 4200 (https://doi.org/10.3390/polym15214200). Constructing first-principles mathematical models which combine macromolecular physical chemistry (e.g. Flory-Huggins theory) descriptions with mass/heat balances towards end-product property estimation, rigorous unit operation (e.g. extruder) design and optimisation is extremely cumbersome, both due to mathematical complexity, but even more so due to the extreme and pervasive parametric uncertainty hampering such efforts.

Therefore, this PhD project aims to combine state-of-the-art Artificial Intelligence (AI) and Machine Learning (ML) methodologies in order to explore optimal blending and processing conditions for polymeric material classes, towards developing materials which will achieve high performance indices for key target properties, while also ensuring high processability and cost-optimal manufacturing at scale.

Strong computational skills, an interest in statistics, and prior experience in numerical methods/software (MATLAB, Python) are essential; prior ML-based project work is desirable.

https://www.eng.ed.ac.uk/about/people/dr-dimitrios-i-gerogiorgis

https://vasileioskoutsos.wixsite.com/softmaterials

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity. Please see details here: https://www.ed.ac.uk/equality-diversity

An undergraduate degree in Chemical/Mechanical Engineering, or a closely related area (Physics, Chemistry), with a strong background in computational modelling.

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree. 

Further information on English language requirements for EU/Overseas applicants.

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere.

Further information and other funding options.

Off

Membrane fouling – the deposition of organic and inorganic matter on the membrane surface – is a major technical obstacle affecting membrane-based water treatment processes. Fouling results in decreased membrane permeance, selectivity, and shorter useful life due to irreversible fouling. Despite significant efforts to mitigate fouling through, e.g., low-fouling membrane coatings, fouling is inevitable due to the high convective fluxes driving foulants to the membrane surface. Consequently, physical and chemical cleaning strategies, known collectively as cleaning-in-place (CiP) protocols, are indispensable to ensure the sustainable use of membrane technology in water treatment.

Most CiP formulations entail proprietary mixtures of buffered surfactants and chelants that dissolve organic foulants and disperse colloidal metal-organic complexes. Application of CiP solutions often follows manufacturer-specified cleaning conditions, including cross-flow velocity, duration and frequency of cleaning cycles. Such operating conditions, however, are not optimised for specific feed water and foulant chemistries. Moreover, the important influence of CiP solution temperature is often neglected. Solution temperature plays a key role in membrane cleaning, as the interactions responsible for foulant adhesion to the membrane become weaker with rising temperature1. However, the role of temperature in CiP has not been studied systematically. Incomplete knowledge about the influence of operating conditions has hindered development of efficient CiP protocols.

This PhD project will formulate tailored CiP strategies for membranes in Scottish Water (SW) treatment plants. The overarching goal is twofold: i) to identify the CiP temperature resulting in optimal membrane performance; ii) to identify CiP formulations (or mixtures thereof) suitable for application at ambient feed water temperatures (i.e., in cold water). Considering that CiP at SW membrane plants is often carried out at ambient water temperature (Tamb = 10 °C or lower), we anticipate significant improvements in cleaning efficiency if CiP were carried out at slightly higher temperatures. The cost of CiP operations at above-ambient temperatures will be weighed against the improvement in process performance (stemming from mitigated fouling) by a technoeconomic analysis. Lastly, we will perform a life cycle assessment of CiP protocols to identify CiP candidates meeting SW’s sustainability goals.

Training and mentoring

This project offers a unique training opportunity in the fundamentals of colloid and interface science, as well as membrane-based processes for water quality control. The student will be mentored by a supervisory team with complementary expertise, who will provide training in a wide variety of experimental techniques. In addition, the student will acquire industrial experience through a placement at a Scottish Water membrane plant.

References

(1) BinAhmed, S.; Hozalski, R. M.; Romero-Vargas Castrillón, S. Feed Temperature Effects on Organic Fouling of Reverse Osmosis Membranes: Competition of Interfacial and Transport Properties. ACS ES&T Eng. 2021, 1 (3), 591–602. https://doi.org/10.1021/acsestengg.0c00258.

(2) Porcelli, N.; Judd, S. Chemical Cleaning of Potable Water Membranes: The Cost Benefit of Optimisation. Water Res. 2010, 44 (5), 1389–1398. https://doi.org/10.1016/j.watres.2009.11.020.

Please note that applications will be reviewed on a continuing basis until the position is filled. Thus, the advert might close for applications before the closing date.

Further information about the supervisor (Dr S Romero-Vargas):

https://www.research.ed.ac.uk/en/persons/santiago-romero-vargas-castrillon

Further information about the co-supervisor (Prof A Lips):

https://www.edinburghcomplexfluids.com/people/individual/alex-lips

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity. Please see details here: https://www.ed.ac.uk/equality-diversity

This is a challenging and ambitious project, requiring a student who is dedicated and enthusiastic about asking, and tackling, fundamental and applied problems. The successful applicant will have been awarded an undergraduate degree at the time of appointment (1st Class or high 2:1, preferably supported by an MSc) in chemical engineering, chemistry, materials science, physics, environmental engineering, or a cognate field. Strong background in physical sciences is required, along with excellent oral and written communication skills in English. Prior research experience in colloid & interface science is highly desirable. While the project is primarily experimental, good or strong quantitative skills are also highly desirable.

Further information on English language requirements for EU/Overseas applicants.

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere, as explained below.

PhD studentships managed by the School of Engineering at the University of Edinburgh are available every year through a competitive process.

Applicants interested in applying for a University-administered award should e-mail the supervisors (Santiago@ed.ac.uk, alips@ed.ac.uk) as soon as possible to begin discussions, explaining how your experience meets the Applicant Requirements given above. Application deadlines vary from mid-January to late March.

Please note that most studentships are available only to Home Students (International students not eligible).

To qualify as a Home student, you must fulfil one of the following criteria:

- You are a UK student

- You are an EU student with settled/pre-settled status who also has 3 years residency in the UK/EEA/Gibraltar/Switzerland immediately before the start of your Programme.

Further information and other funding options.

Off

Fully-funded PhD studentship available on nanosensor engineering by electrocrystallisation with the opportunity to start immediately. The overall goal of the project is to create a platform technology for nanosensor scale up by understanding the nanoscale phenomena in electrodeposition. Electroanalytical and nanomaterials characterisation methods will be used to investigate the nucleation and crystal growth mechanisms of charge-transfer complexes (CTCs) on ultramicroelectrodes and nanoelectrode patterns. The knowledge gained will be used to achieve controlled electrodeposition of CTC nanowire sensors on microchips. This project will contribute to UK’s global competitiveness in high-tech areas such as advanced manufacturing of wearable microelectronics and the internet-of-things sensors.

Electrodeposition is used by electroplating industry to deposit monolayers, thin films, and thick coatings. Understanding of electrochemical nucleation and crystal growth at the nanoscale is necessary for widening the adoption of electrodeposition by high-tech industries such as energy storage, advanced electrode materials, and sensing. Precise electrodeposition of nanowires and thin films on microchips holds the potential for scalable manufacturing of nanosensors.

This project seeks to address a significant knowledge gap related to electrodeposition at the nanoscale, with a focus on CTCs from the tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) family. Recent progress in nanomaterials characterisation and simulations reveals an intricate process involving nanocluster building blocks, their interactions, and multistep crystallisation pathways. Electrodeposition provides a unique means to study early-stage crystallisation because of the additional control provided by the applied overpotential. To bridge this knowledge gap, the project outlines specific aims: (1) obtain dynamic structural data on early-stage CTC electrocrystallisation through real-time microscopic and electrochemical measurements integrating the ultramicroelectrode technique; (2) scale up findings from single ultramicroelectrodes to nanoelectrode arrays; and (3) demonstrate impact on technology by creating gas nanosensors using CTC electrodeposition.

If successful, you will have the opportunity to work under the supervision of Professor Guangzhao Mao, an internationally recognised scientist and the Head of School of Engineering at The University of Edinburgh.

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity. Please see details here: https://www.ed.ac.uk/equality-diversity

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree. Further information on English language requirements for EU/Overseas applicants.

Tuition fees + stipend are available for Home/EU and International students.

Applications are also welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere.

Further information and other funding options.

Off
Image
Electrochemical nucleation and crystal growth scientific figure

Membrane-based processes for water treatment, such as reverse osmosis (RO), hold promise in tackling water scarcity locally and globally. Nevertheless, conventional polyamide membranes for RO exhibit low rejection of Small, charge-Neutral Contaminants (SNCs), which endanger human health and biota.

Progress towards highly selective membranes has been hindered by insufficient understanding of the mechanisms that underlie separation efficiency: how water and contaminants sorb into, and diffuse through, polyamide membranes. Both contaminant sorption and transport require a molecular-level treatment, at far higher resolution than is afforded by conventional (continuum) membrane transport models.

Using molecular dynamics (MD) simulation and free energy calculations, this project aims to computationally design highly selective RO membranes by elucidating the mechanisms governing SNC sorption and transport. The project will focus on SNCs that are insufficiently rejected by state-of-the art RO membranes, e.g., boric acid, a toxic constituent of seawater, and N-nitrosodimethylamine (NDMA), a carcinogenic disinfection by-product whose insufficient removal during RO-based wastewater reuse (rejection ~ 60%) demands additional, and costly, advanced oxidation processes (e.g., high-energy UV).

The specific objectives of this project are:

  • Objective 1. To gain molecular-level insight into the hydration layer at the polyamide-water interface, to understand how interfacial water molecules determine SNC sorption and transport.
  • Objective 2. To elucidate the role of interfacial chemistry in SNC sorption to polyamide, in order to computationally develop surface coatings to bolster SNC rejection, and thus establish structure-property-performance relations linking coating composition with SNC rejection.
  • Objective 3. To characterise the transport mechanisms of SNCs through polyamide, to enable transport models to quantify the trade-off between contaminant rejection and water permeance.

Simulation insights emerging from this project will enable membrane manufacturers to develop highly selective RO membranes. These materials will lower the cost of seawater desalination and wastewater recycling by RO, in addition to producing safer product water for humans and ecosystems.

Research and Training

The successful applicant will conduct research in the School of Engineering at the University of Edinburgh, under the co-supervision of Dr Santiago Romero-Vargas Castrillón and Dr Rohit Pillai. The student will have access to a wide range of computational facilities, including ARCHER2, the UK’s national supercomputer. Educational and research opportunities afforded by this project include:

  • Training in state-of-the-art molecular simulation technique
  • Close mentoring through regular meetings, as well as interactions with other investigators at the Institute of Multiscale Thermofluids (IMT) and the Institute for Infrastructure and Environment (IIE) at Edinburgh
  • The opportunity to attend national and international scientific conferences to disseminate your result
  • Strong emphasis and support to publish research results in leading scientific journals, which will kickstart your career in academia or industry

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity. Please see details here: https://www.ed.ac.uk/equality-diversity

This is a challenging and scientifically ambitious project, requiring a student who is dedicated and enthusiastic about asking, and tackling, fundamental questions. The successful applicant will have been awarded an undergraduate degree at the time of appointment (2:1 or above, preferably supported by an MSc) in chemical engineering, mechanical engineering, chemistry, physics, materials science, or a cognate field. A strong background in mathematics and physics is required, as well as interest in molecular simulation. Prior research experience in modeling and simulation is highly desirable.

Further information on English language requirements for EU/Overseas applicants.

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere, as explained below.

PhD studentships managed by the School of Engineering at the University of Edinburgh are available every year through a competitive process.

Applicants interested in applying for a University-administered award should e-mail the supervisors (Santiago@ed.ac.uk, R.Pillai@ed.ac.uk) as soon as possible to begin discussions, explaining how your experience meets the Applicant Requirements given above. Application deadlines vary from mid-January to late March.

Please note that most studentships are available only to Home Students (International students not eligible.)

To qualify as a Home student, you must fulfil one of the following criteria:

• You are a UK student

• You are an EU student with settled/pre-settled status who also has 3 years residency in the UK/EEA/Gibraltar/Switzerland immediately before the start of your Programme.

Further information and other funding options.

Off
Image
Figure 1. Summary of trace organic contaminant rejection as a function of molecular weight (MW) (data for polyamide RO membranes). Small (i.e., low MW), charge-Neutral Contaminants (SNCs), such as NDMA, exhibit lower rejection compared to charged compounds of similar molecular weight. Data from Werber et al. Environ. Sci. Technol. Lett. 2016, 3, 4, 112–120

Zinc-ion batteries (ZIBs) are emerging as a promising alternative to lithium-ion batteries (LIBs) due to their inherent safety, low cost, and environmental friendliness. As the demand for efficient, sustainable, and cost-effective energy storage solutions grows, ZIBs present a viable option for large-scale applications such as grid storage and electric vehicles. One of the key components determining the performance of ZIBs is the electrolyte, which plays a crucial role in ion transport, electrochemical stability, and overall battery efficiency.

This project focuses on the development and optimization of advanced electrolytes for high-performance zinc-ion batteries. Unlike lithium, zinc is abundant, non-toxic, and operates in aqueous environments, making it safer and more affordable. However, challenges such as zinc dendrite formation, limited electrolyte stability, and slow ion mobility need to be addressed for ZIBs to compete with LIBs in commercial applications.

Primary Objectives:

  1. Design and optimize both aqueous and non-aqueous electrolyte systems, incorporating novel additives, ionic liquids, and solid-state options to enhance performance. This will involve addressing key challenges such as zinc dendrite formation, side reactions, and limited electrochemical stability.
  2. Investigate strategies to prevent zinc dendrite formation and improve the cycling stability of zinc anodes. By optimizing the electrolyte composition, we aim to extend the battery's lifespan and enhance safety.
  3. Investigate the interaction between electrolytes and various cathode materials to ensure compatibility and maximize energy density, charging speed, and cycle life. This will help identify the best electrolyte-cathode combinations for specific applications.
  4. Utilize advanced electrochemical characterization techniques and computational modeling to understand the mechanisms governing electrolyte performance, ion transport, and electrode stability. These insights will inform the rational design of next-generation electrolytes.

The project will explore the balance between aqueous and non-aqueous systems, considering factors such as ion mobility, corrosion resistance, and electrochemical window. By enhancing zinc ion transport and overall battery efficiency, this research aims to push the boundaries of green energy technology.

The outcome will be a new generation of high-performance, scalable, and sustainable ZIBs, providing a viable solution for grid energy storage, electric vehicles, and renewable energy applications.

Please direct informal enquiries and requests for further information to Dr. Peisan E (Sharel) (Email Address: Sharel.E@ed.ac.uk), and provide a CV.

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity: https://www.ed.ac.uk/equality-diversity

Essential Experience:

  • BSc and/or Masters Degree in Chemical Engineering, Chemistry, Physics, Engineering, Mathematics, Computer Science, Data Science, Machine Learning or Artificial Intelligence
  • A minimum 2:1 undergraduate degree (or equivalent)
  • Excellent spoken and written English and good communication skills. Further information on English language requirements for EU/Overseas applicants.
  • Experience using modelling and simulation techniques
  • Literature surveys, documentation and reporting

 

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere, as explained below.

PhD studentships managed by the School of Engineering at the University of Edinburgh are available every year through a competitive process.

Applicants interested in applying for a University-administered award should e-mail the supervisors (sharel.e@ed.ac.uk) as soon as possible to begin discussions, explaining how your experience meets the Applicant Requirements given above. Application deadlines vary from mid-January to late March.

Further information and other funding options.

Off

Condensation is a heat transfer process in which a vapor releases energy/heat as it changes its phase to become a liquid, which typically occurs when the vapor is cooled below its dew temperature, often upon making contact with a cooler surface. This process is critical in numerous applications, including in HVAC systems, power generation, and refrigeration. The effectiveness of dropwise condensation in transferring heat makes it essential in condensers, where minimizing the surface area for dropwise condensation and optimizing conditions for heat transfer can significantly enhance system efficiency. Techniques such as enhancing surface properties or controlling fluid dynamics are often employed to maximize the rate of heat transfer during the condensation process.

Recently, we developed new techniques to modify surfaces with regions that can tune the surface properties and control the fluid dynamics of condensing droplets via patterned liquid-like surfaces, which are based on Slippery Covalently Attached Liquid-like Surfaces (SCALS). In this experimental project, you will tackle questions involving condensation on patterned liquid-like surfaces: we are interested in understanding how the different SCALS chemistries and the nature of the patterning affect condensation and heat transfer and help to maintain a stable heat flux during condensation phase-changes. This will require parametric and methodological studies and by answering questions like these, you will be pushing the boundaries of knowledge in this field and kick-start your postgraduate career.

We expect that you will have a good degree in Engineering or Physics with an experimental and modelling background. We are particularly interested to hear from applicants with experience in surface science, fluids dynamics and fluid mechanics and/or phase change.

If successful, you will become a member of the Wetting, Interfacial Sciences and Engineering WISE Group within the Institute for Multiscale Thermofluids at the School of Engineering. You will join a vibrant community of PhD students, postdoctoral research associates and academics working in various aspects of surfaces and wetting, and will develop as a scientist benefiting from our track record, which includes publications in top journals, international collaborations and contributions to key international conferences.

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity: https://www.ed.ac.uk/equality-diversity

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in Engineering or Physics with an experimental and modelling background, possibly supported by an MSc Degree. We are particularly interested to hear from applicants with experience in surface science, fluids dynamics and fluid mechanics and/or phase change.

Further information on English language requirements for EU/Overseas applicants.

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere.

Further information and other funding options.

Off

The interaction of droplets with structured surfaces is extremely important in microfluidics, with target applications in medical diagnostics, self-assembly and printing. In this project you will study the dynamic interactions of droplets with structured solid surfaces coated by a thin liquid lubricant layer. Depending on your skills and interests, you will tackle questions about the fluid dynamics of this system using experimental/computational approaches, or a combination of both.

If successful, you will become a member of the Wetting, Interfacial Sciences and Engineering Group within the Institute for Multiscale Thermofluids at the School of Engineering. You will join a vibrant community of PhD students, postdoctoral research associates and academics working in various aspects of surfaces and wetting, and will develop as a scientist benefiting from our track record, which includes publications in top journals, international collaborations and contributions to key international conferences.

Informal queries can be directed to Dr Rodrigo Ledesma-Aguilar (Rodrigo.ledesma@ed.ac.uk)

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity: https://www.ed.ac.uk/equality-diversity

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree.

We expect that you will have a good degree in Engineering or Physics with an experimental or computational modelling background. We are particularly interested to hear from applicants with experience in surfaces and fluid mechanics.

Further information on English language requirements for EU/Overseas applicants.

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere.

Further information and other funding options.

Off

Friction is a key limiting factor affecting the motion of liquids in contact with solid surfaces. When water droplets interact with a solid surface, friction can severely limit the speed at which they move, or hamper their motion altogether. Fundamentally, friction between droplets and solid forces is an open field of research in fluid mechanics, with important applications in a range of fields, from microfluidics to self-cleaning and heat transfer.  

Recently, we have initiated research on the interaction between droplets and liquid-like surfaces. These are surfaces created by grafting polymer chains to a solid substrate, thus creating an ultrasmooth surface. In this project you will study the dynamics of droplets on patterned LLS, where a surface topography, or a chemical pattern, is applied. The scope of the project will be experimental, theoretical, or a combination of both, depending on your specific skill set. By addressing the questions of this project, you will be pushing the boundaries of knowledge in this new field and kick-start your postgraduate career.

If successful, you will become a member of the Wetting, Interfacial Sciences and Engineering Group within the Institute for Multiscale Thermofluids at the School of Engineering. You will join a vibrant community of PhD students, postdoctoral research associates and academics working in various aspects of surfaces and wetting, and will develop as a scientist benefiting from our track record, which includes publications in top journals, international collaborations and contributions to key international conferences.

The following academic team will be part of your supervision team:

Principal supervisor:Rodrigo Ledesma Aguilar: https://www.eng.ed.ac.uk/about/people/dr-rodrigo-ledesma-aguilar

Assistant supervisors:Gary Wells: https://www.eng.ed.ac.uk/about/people/dr-gary-wellsProfessor Glen McHale: https://www.eng.ed.ac.uk/about/people/professor-glen-mchale

Informal queries can be directed to Dr Rodrigo Ledesma-Aguilar (Rodrigo.ledesma@ed.ac.uk)

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity: https://www.ed.ac.uk/equality-diversity

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree.

We expect that you will have a good degree in Engineering or Physics with an experimental and/or modelling background. We are particularly interested to hear from applicants with experience in surfaces and fluid mechanics.

Further information on English language requirements for EU/Overseas applicants.

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere.

Further information and other funding options.

Off

Food texture is related to the way our senses perceive and feel the rheological and mechanical properties of edible substances. For example a potato chip is crispy; an apple is crunchy; butter is soft; bread is firm; candy is hard; yogurt is smooth; cream is thick; cake is moist, and honey is sticky. Food texture is critical for the consumer and impacts on a product’s market share. It is affected by the composition, manufacturing process, storage conditions and aging. It impacts the final quality and nutrition value of the food product. Food industry strives to improve texture while enhancing the product’s nutritional value and health benefits. For example, healthy oleogels can be used in substitution of harmful trans/saturated fats while retaining the sense of a “mouthful” product.

Texture is complex to quantify, as it is the result of interplay of the food mechanical and rheological properties as physically sensed in the mouth. It is the result of the complex movement of chewing involving our jaws, teeth, and tongue, and the combined comminution (particle size distribution change) and gradual dissolution of substances in saliva.

This project aims to develop and combine mechanical and rheological testing methodologies that will characterize texture rapidly and reliably, in real time, during the manufacturing and storage period. The experimental program will be complemented by state-of-the-art artificial intelligence (AI) and machine learning (ML) methodologies in order to correlate improved texture with optimized manufacturing and storage processes.

The ideal candidate will combine strong experimental and computational skills, an interest in food science and engineering, mechanics, rheology and numerical methods/software (e.g., MATLAB, Python).

https://vasileioskoutsos.wixsite.com/softmaterials

www.eng.ed.ac.uk/about/people/dr-dimitrios-i-gerogiorgis

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity. Please see details here: https://www.ed.ac.uk/equality-diversity

An undergraduate degree in Chemical/Mechanical Engineering, or a closely related area (Physics, Chemistry), with a strong background in computational modelling.

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree.

Further information on English language requirements for EU/Overseas applicants.

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere

Further information and other funding options.

Off
Image
Systematic Food Texture Characterisation Methodology