Infrastructure and Environment

Membrane fouling – the deposition of organic and inorganic matter on the membrane surface – is a major technical obstacle affecting membrane-based water treatment processes. Fouling results in decreased membrane permeance, selectivity, and shorter useful life due to irreversible fouling. Despite significant efforts to mitigate fouling through, e.g., low-fouling membrane coatings, fouling is inevitable due to the high convective fluxes driving foulants to the membrane surface. Consequently, physical and chemical cleaning strategies, known collectively as cleaning-in-place (CiP) protocols, are indispensable to ensure the sustainable use of membrane technology in water treatment.

Most CiP formulations entail proprietary mixtures of buffered surfactants and chelants that dissolve organic foulants and disperse colloidal metal-organic complexes. Application of CiP solutions often follows manufacturer-specified cleaning conditions, including cross-flow velocity, duration and frequency of cleaning cycles. Such operating conditions, however, are not optimised for specific feed water and foulant chemistries. Moreover, the important influence of CiP solution temperature is often neglected. Solution temperature plays a key role in membrane cleaning, as the interactions responsible for foulant adhesion to the membrane become weaker with rising temperature1. However, the role of temperature in CiP has not been studied systematically. Incomplete knowledge about the influence of operating conditions has hindered development of efficient CiP protocols.

This PhD project will formulate tailored CiP strategies for membranes in Scottish Water (SW) treatment plants. The overarching goal is twofold: i) to identify the CiP temperature resulting in optimal membrane performance; ii) to identify CiP formulations (or mixtures thereof) suitable for application at ambient feed water temperatures (i.e., in cold water). Considering that CiP at SW membrane plants is often carried out at ambient water temperature (Tamb = 10 °C or lower), we anticipate significant improvements in cleaning efficiency if CiP were carried out at slightly higher temperatures. The cost of CiP operations at above-ambient temperatures will be weighed against the improvement in process performance (stemming from mitigated fouling) by a technoeconomic analysis. Lastly, we will perform a life cycle assessment of CiP protocols to identify CiP candidates meeting SW’s sustainability goals.

Training and mentoring

This project offers a unique training opportunity in the fundamentals of colloid and interface science, as well as membrane-based processes for water quality control. The student will be mentored by a supervisory team with complementary expertise, who will provide training in a wide variety of experimental techniques. In addition, the student will acquire industrial experience through a placement at a Scottish Water membrane plant.

References

(1) BinAhmed, S.; Hozalski, R. M.; Romero-Vargas Castrillón, S. Feed Temperature Effects on Organic Fouling of Reverse Osmosis Membranes: Competition of Interfacial and Transport Properties. ACS ES&T Eng. 2021, 1 (3), 591–602. https://doi.org/10.1021/acsestengg.0c00258.

(2) Porcelli, N.; Judd, S. Chemical Cleaning of Potable Water Membranes: The Cost Benefit of Optimisation. Water Res. 2010, 44 (5), 1389–1398. https://doi.org/10.1016/j.watres.2009.11.020.

Please note that applications will be reviewed on a continuing basis until the position is filled. Thus, the advert might close for applications before the closing date.

Further information about the supervisor (Dr S Romero-Vargas):

https://www.research.ed.ac.uk/en/persons/santiago-romero-vargas-castrillon

Further information about the co-supervisor (Prof A Lips):

https://www.edinburghcomplexfluids.com/people/individual/alex-lips

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity. Please see details here: https://www.ed.ac.uk/equality-diversity

This is a challenging and ambitious project, requiring a student who is dedicated and enthusiastic about asking, and tackling, fundamental and applied problems. The successful applicant will have been awarded an undergraduate degree at the time of appointment (1st Class or high 2:1, preferably supported by an MSc) in chemical engineering, chemistry, materials science, physics, environmental engineering, or a cognate field. Strong background in physical sciences is required, along with excellent oral and written communication skills in English. Prior research experience in colloid & interface science is highly desirable. While the project is primarily experimental, good or strong quantitative skills are also highly desirable.

Further information on English language requirements for EU/Overseas applicants.

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere, as explained below.

PhD studentships managed by the School of Engineering at the University of Edinburgh are available every year through a competitive process.

Applicants interested in applying for a University-administered award should e-mail the supervisors (Santiago@ed.ac.uk, alips@ed.ac.uk) as soon as possible to begin discussions, explaining how your experience meets the Applicant Requirements given above. Application deadlines vary from mid-January to late March.

Please note that most studentships are available only to Home Students (International students not eligible).

To qualify as a Home student, you must fulfil one of the following criteria:

- You are a UK student

- You are an EU student with settled/pre-settled status who also has 3 years residency in the UK/EEA/Gibraltar/Switzerland immediately before the start of your Programme.

Further information and other funding options.

Off

Pressing fire safety challenges exist in both the built and natural environment with climate change effects leading to increased extreme weather events in many regions increasing wildfire risk. Similarly, sustainable development efforts are one of the drivers of increased adoption of bio-based, sustainable construction materials some of which may also introduce novel fire hazards. This PhD position provides the opportunity to contribute to ongoing efforts at the Edinburgh Fire Research Centre to apply fundamental principles of physics, chemistry and engineering to characterize the combustion behaviour of wildland vegetation and bio-based materials.  

This PhD position would suit motivated candidates from a wide range of academic backgrounds (e.g. Applied Science/Maths/Physics, Engineering, Geosciences etc.) who are interested in applying their existing skillset to problems in fire science, fire engineering and/or wildland fire science.

The project will include the opportunity to gain expertise in the development and use of a variety of established and novel measurement instrumentation to monitor and characterize the variation in structure of a fuel as it burns. For example, utilizing established methods to quantify the spatial and temporal variation of solid fuel temperatures (e.g. colour pyrometry) and burning rate (continuous mass loss measurements). Alongside developing novel approaches to characterising and quantifying the variation in fuel structure (volume, geometry) and the resulting influence on linked physical properties (e.g. drag force, radiative absorption).

The results obtained will be used to support the development of improved fire behaviour modelling tools and to improve our existing theoretical descriptions of fire spread in porous fuels. This in turn, will support ongoing global efforts to develop improved decision support tools to aid land managers and fire agencies in developing land management and fire management strategies in the natural environment, and to support fire safety engineering design efforts in the built environment.

During this project, you will be part of The Edinburgh Fire Research Centre within the Institute for Infrastructure and Environment. You will join a vibrant community of PhD students, postdoctoral research associates and academics working in various aspects of fire science and engineering. This is a collaborative and friendly environment and strong teamwork and communication skills are therefore required.

More information on the Edinburgh Fire Research Centre - http://www.fire.eng.ed.ac.uk/research

Examples of the effects of fuel structure on combustion behaviour in wildland fires: https://www.youtube.com/watch?v=LPqXRsMbz18&t=387s

Existing Wildfire Research projects at The University of Edinburgh in collaboration with the USDA Forest Service & partners. https://www.youtube.com/watch?v=sEO_8oXtbes&t=4s

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity. Please see details here: https://www.ed.ac.uk/equality-diversity

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree. Further information on English language requirements for EU/Overseas applicants.

Tuition fees + stipend are available for Home/EU and International students

Further information and other funding options.

Off
Image
Experimental Fire Science: Improved real-time characterization of fuel properties during combustion

Membrane-based processes for water treatment, such as reverse osmosis (RO), hold promise in tackling water scarcity locally and globally. Nevertheless, conventional polyamide membranes for RO exhibit low rejection of Small, charge-Neutral Contaminants (SNCs), which endanger human health and biota.

Progress towards highly selective membranes has been hindered by insufficient understanding of the mechanisms that underlie separation efficiency: how water and contaminants sorb into, and diffuse through, polyamide membranes. Both contaminant sorption and transport require a molecular-level treatment, at far higher resolution than is afforded by conventional (continuum) membrane transport models.

Using molecular dynamics (MD) simulation and free energy calculations, this project aims to computationally design highly selective RO membranes by elucidating the mechanisms governing SNC sorption and transport. The project will focus on SNCs that are insufficiently rejected by state-of-the art RO membranes, e.g., boric acid, a toxic constituent of seawater, and N-nitrosodimethylamine (NDMA), a carcinogenic disinfection by-product whose insufficient removal during RO-based wastewater reuse (rejection ~ 60%) demands additional, and costly, advanced oxidation processes (e.g., high-energy UV).

The specific objectives of this project are:

  • Objective 1. To gain molecular-level insight into the hydration layer at the polyamide-water interface, to understand how interfacial water molecules determine SNC sorption and transport.
  • Objective 2. To elucidate the role of interfacial chemistry in SNC sorption to polyamide, in order to computationally develop surface coatings to bolster SNC rejection, and thus establish structure-property-performance relations linking coating composition with SNC rejection.
  • Objective 3. To characterise the transport mechanisms of SNCs through polyamide, to enable transport models to quantify the trade-off between contaminant rejection and water permeance.

Simulation insights emerging from this project will enable membrane manufacturers to develop highly selective RO membranes. These materials will lower the cost of seawater desalination and wastewater recycling by RO, in addition to producing safer product water for humans and ecosystems.

Research and Training

The successful applicant will conduct research in the School of Engineering at the University of Edinburgh, under the co-supervision of Dr Santiago Romero-Vargas Castrillón and Dr Rohit Pillai. The student will have access to a wide range of computational facilities, including ARCHER2, the UK’s national supercomputer. Educational and research opportunities afforded by this project include:

  • Training in state-of-the-art molecular simulation technique
  • Close mentoring through regular meetings, as well as interactions with other investigators at the Institute of Multiscale Thermofluids (IMT) and the Institute for Infrastructure and Environment (IIE) at Edinburgh
  • The opportunity to attend national and international scientific conferences to disseminate your result
  • Strong emphasis and support to publish research results in leading scientific journals, which will kickstart your career in academia or industry

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity. Please see details here: https://www.ed.ac.uk/equality-diversity

This is a challenging and scientifically ambitious project, requiring a student who is dedicated and enthusiastic about asking, and tackling, fundamental questions. The successful applicant will have been awarded an undergraduate degree at the time of appointment (2:1 or above, preferably supported by an MSc) in chemical engineering, mechanical engineering, chemistry, physics, materials science, or a cognate field. A strong background in mathematics and physics is required, as well as interest in molecular simulation. Prior research experience in modeling and simulation is highly desirable.

Further information on English language requirements for EU/Overseas applicants.

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere, as explained below.

PhD studentships managed by the School of Engineering at the University of Edinburgh are available every year through a competitive process.

Applicants interested in applying for a University-administered award should e-mail the supervisors (Santiago@ed.ac.uk, R.Pillai@ed.ac.uk) as soon as possible to begin discussions, explaining how your experience meets the Applicant Requirements given above. Application deadlines vary from mid-January to late March.

Please note that most studentships are available only to Home Students (International students not eligible.)

To qualify as a Home student, you must fulfil one of the following criteria:

• You are a UK student

• You are an EU student with settled/pre-settled status who also has 3 years residency in the UK/EEA/Gibraltar/Switzerland immediately before the start of your Programme.

Further information and other funding options.

Off
Image
Figure 1. Summary of trace organic contaminant rejection as a function of molecular weight (MW) (data for polyamide RO membranes). Small (i.e., low MW), charge-Neutral Contaminants (SNCs), such as NDMA, exhibit lower rejection compared to charged compounds of similar molecular weight. Data from Werber et al. Environ. Sci. Technol. Lett. 2016, 3, 4, 112–120

The School of Engineering at the University of Edinburgh invites applications for a fully funded PhD scholarship on the digitalisation of buildings. The successful candidate will explore innovative methodologies to digitalise collections of existing buildings with the purpose of understanding and managing their environmental performance.

Most existing buildings in European countries predate the adoption of high energy efficiency standards, and a significant proportion were built well before architectural design processes were digitalised or energy conservation regulations introduced. The result is a diverse stock for which limited information exist. Even in cases where information is available, it tends to be patchy, out of date, or exists in physical documents that cannot be readily consumed by modern processes for facility management.

At the same time, pressure is mounting for a highly energy-efficient, low-carbon stock that meets end-user demands at the lowest possible costs. Here, many proposals have been put forward, from simple methods to advanced, real-time coupling with building simulations and a wide range of algorithms. However, they presume the right information is available at an adequate quality to inform such advanced workflows.

Your research will develop strategies to digitalise collections of buildings with the view to support asset owners. In particular, the work will explore digitalisation for energy management, linking with ongoing activities around building energy modelling and digital twins. The project will research solutions using the buildings of the University of Edinburgh. It will be conducted in close partnership with our Estates Department, who develop and maintain more than 550 buildings across Scotland. Together, these buildings represent key challenges of the building sector at large, like different uses, level of information, vintage, construction techniques, energy systems or services.

We welcome applications from all qualified candidates, and we wish to particularly encourage applications from groups underrepresented at this level.

To apply to this opportunity, you will need to:

We are available to discuss and give feedback before a full application is sent through the system provided full drafts are available. We will shortlist candidates for interview and the scholarship will be then allocated based on the assessment by the panel.

A comprehensive training programme will be provided comprising both specialist scientific training and generic transferable and professional skills, as well as mentorship. The PhD candidate will have numerous training options, within the University of Edinburgh and project partners. Depending on the experience of the candidate, options include (1) building physics, (2) introduction to data science or (3) geospatial data analysis.

The candidate will also have the opportunity to become a teaching assistant following formal training, as well as opportunities to contribute to wider training and outreach activities. Further training in both academic and interdisciplinary skills will be available as part of Edinburgh’s Institute for Academic Development.

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity. Please see details here: https://www.ed.ac.uk/equality-diversity

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree. Further information on English language requirements for EU/Overseas applicants.

A background related to building services engineering, construction management or architecture would be an advantage for the project.

Tuition fees and stipend are available for Home/EU and International students.

Further information and other funding options.

Off

Today's urban landscape is defined largely by steel and concrete buildings, bridges and roads, which have started to degrade at an increased rate in the last 30 years due to corrosion of steel, degradation and scour, creep and cracking of concrete. The expenses for concrete building rehabilitation and maintenance are immense: €200B was spent on restoration of concrete structures alone in 2018 (for the EU27 countries).

The proposed research addresses these problems by focusing on circular concrete columns, which are critically important structural elements in construction of buildings, parking garages and bridges or piers. In these applications there are many advantages in using precast or in-situ cast concrete filled fibre reinforced polymer (FRP) tube columns using self-compacting concrete (SCC): The columns are – compared to conventional RC columns – lighter in weight, do not need a formwork nor concrete compaction (SCC), and the FRP tube can be designed to (partially or totally) replace the need for a transverse and longitudinal steel reinforcement. In addition, concrete filled carbon FRP (CFRP) tubes (CFFTs) confine the inner concrete core increasing the strength and ductility of the column and its durability in harsh environments.

The mechanics of conventional circular FRP-confined concrete columns has been studied by many researchers, who have confirmed that the load carrying capacity, stiffness, and ductility of such elements is similar to circular columns repaired by full wrapping with externally bonded FRP sheets and fabrics. This project will build on the available knowledge and will use a proprietary, highly expansive SCC, which will be restrained after casting by prefabricated CFRP tubes.

Researchers at the Swiss Federal Laboratories for Materials Science and Technology (Empa) have successfully developed the highly expansive SCC based on a combination of calcium sulfo-aluminate expansive agent, super absorbent polymers, shrinkage reducing agent, and short PP fibers, and have proven that a self-prestress of high-modulus CFRP is feasible.

The use of this SCC in CFFT columns is an ideal application for the expansive concrete in which the FRP tube would protect it from humidity variations hence guaranteeing a stable state and constant internal confinement pressure in the FRP tube. This will be monitored by hoop strain monitoring with the aid of novel embedded distributed fibre optic sensors (DFOS) in the CFRP tube wall.

The project will also make use of novel pseudo-ductile hybrid FRP wrap materials, also developed at Empa, thus combining multiple material innovations to develop new types of structural elements with previously unknown performance and mechanics.

Laboratory for Mechanical Systems Engineering: https://www.empa.ch/web/s304

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity. Please see details here: https://www.ed.ac.uk/equality-diversity

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree. Ideal candidate must have background in either Civil, Structural or Mechanical Engineering.

Further information on English language requirements for EU/Overseas applicants.

Tuition fees + stipend are available for Home/EU and International students

The candidate will periodically spend time on research visits to EMPA of 2-6 weeks, depending on a range of project-related factors. Additional funding for the research (i.e. research, travel, and accommodation costs) will be provided by EMPA – to be determined as the project progresses.

Applications are also welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere.

Further information and other funding options.

Off
Image
A concrete filled carbon FRP (CFRP) tube (CFFT)

This project aims to investigate the capabilities of adaptive structures that change their geometry and mechanical properties to accommodate operational loading and extend their lifespan, thereby supporting sustainable infrastructure and a circular economy.

The core objective of this project is to engineer a self-adapting structure that adjusts to the prescribed loading conditions. This adaptation is achieved by integrating local structures that accommodate stiffness variations along the global structure. The local structures will change their geometry and shape in response to the applied loads, resulting in emergent properties in the main global structure. Analytical modeling of the sub-structures will provide understanding and control for stiffness tailoring, which will translate into desirable mechanical properties in the main structure. The connection between global properties and sub-structure geometry changes aims to be achieved by understanding the relationships between geometric parameters and vibration response. The geometric nonlinearity induced by the local sub-structures may cause amplitude-dependent nonlinear dynamic responses. Thus, understanding the underlying physics in the coupling between local and global structures, along with the vibration response of the global structure, aims to facilitate feedback to passively control the mechanical properties of the structure. Consequently, this dynamic response leads to continuous shape and geometry modifications within the structure, ultimately enhancing its capacity to accommodate specified loading requirements more effectively. The adaptive structures will benefit operability by maximizing structural capacity during service.

This project is supervised by Dr David Garcia Cava (School of Engineering, University of Edinburgh). It will involve regular interaction with collaborators from academia and industry. Interested candidates may contact the supervisor for further information (david.garcia@ed.ac.uk).

Personal website: https://dgarciacava.github.io/

This advert might close once a suitable candidate is found. Please apply as soon as possible to avoid disappointment.

References

[1] Sundararaman, V., O’Donnell, M.P., Chenchiah, I.V., Clancy, G. and Weaver, P.M., 2023. Stiffness tailoring in sinusoidal lattice structures through passive topology morphing using contact connections. Materials & Design, 226, p.111649.

[2] Zhao, B., Thomsen, H.R., Pu, X., Fang, S., Lai, Z., Van Damme, B., Bergamini, A., Chatzi, E. and Colombi, A., 2024. A nonlinear damped metamaterial: Wideband attenuation with nonlinear bandgap and modal dissipation. Mechanical Systems and Signal Processing, 208, p.111079.

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity. Please see details here: https://www.ed.ac.uk/equality-diversity

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree.

Applications are particularly welcome from candidates expecting to receive a first-class degree in mechanical engineering, physics, applied mathematics or a closely related subject.

Interests on: Structural mechanics and dynamics, Stochastic modelling and uncertainty quantification.

Further information on English language requirements for EU/Overseas applicants.

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere.

*Competition (EPSRC) funding may be available for an exceptional candidate but please note you must be a UK student or an EU student who has pre-settled/settled status and has lived in the UK for at leats 3 years.

Further information and other funding options.

Off
Image
Adaptive and smart structures for operational variability and life extension
Reader
1.20 William Rankine Building
Civil and Environmental Engineering
Infrastructure and Environment
Image
Dr Marcelo Dias

Dr Dias obtained his bachelor’s in physics at the State University of São Paulo, Brazil. Four years later, he commenced a MSc in theoretical physics from his alma mater. In 2012, he obtained his PhD degree from the University of Massachusetts, USA, where he researched on the mechanics of origami structures and growth mechanisms. Dr Dias has worked as a researcher on a broad range of topics in structural engineering and applied mathematics at Brown University School of Engineering (USA), Aalto University (Finland), and the Nordic Institute for Theoretical Physics at KTH (Sweden). Before joining the University of Edinburgh, Dr Dias was an Associate Professor of mechanical engineering at Aarhus University in Denmark, where he lead his research group 'Mechanical Metamaterials and Soft Matter’.

  • Ph.D. in Physics (2012), University of Massachusetts Amherst, Amherst, MA, USA
  • M.Sc. in Physics (2007), Theoretical Physics Institute – IFT, São Paulo, SP, Brazil
  • B.Sc. in Physics (2004), State University of São Paulo – UNESP, Rio Claro, SP, Brazil
  • Theoretical mechancis
  • Soft condensed matter physics
  • Applied mathematics
  • Differential geometry
  • Dimensionally reduced models and structures (beams, rods, plates, and shells)
  • Stability theory
  • Mechanical metamaterials (Auxetic structures, origami, kirigami, etc)
  • Biomechanics
  • Fluid-structure interactions
Reader
1.20 William Rankine Building
Civil and Environmental Engineering
Infrastructure and Environment
Image
Dr Marcelo Dias

Dr Dias obtained his bachelor’s in physics at the State University of São Paulo, Brazil. Four years later, he commenced a MSc in theoretical physics from his alma mater. In 2012, he obtained his PhD degree from the University of Massachusetts, USA, where he researched on the mechanics of origami structures and growth mechanisms. Dr Dias has worked as a researcher on a broad range of topics in structural engineering and applied mathematics at Brown University School of Engineering (USA), Aalto University (Finland), and the Nordic Institute for Theoretical Physics at KTH (Sweden). Before joining the University of Edinburgh, Dr Dias was an Associate Professor of mechanical engineering at Aarhus University in Denmark, where he lead his research group 'Mechanical Metamaterials and Soft Matter’.

  • Ph.D. in Physics (2012), University of Massachusetts Amherst, Amherst, MA, USA
  • M.Sc. in Physics (2007), Theoretical Physics Institute – IFT, São Paulo, SP, Brazil
  • B.Sc. in Physics (2004), State University of São Paulo – UNESP, Rio Claro, SP, Brazil
  • Theoretical mechancis
  • Soft condensed matter physics
  • Applied mathematics
  • Differential geometry
  • Dimensionally reduced models and structures (beams, rods, plates, and shells)
  • Stability theory
  • Mechanical metamaterials (Auxetic structures, origami, kirigami, etc)
  • Biomechanics
  • Fluid-structure interactions
Postgraduate
G.1 John Muir
Infrastructure and Environment
Postgraduate
G.1 John Muir
Infrastructure and Environment