Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Titlesort ascending Principal Supervisor Research Institutes Project Summary
ETP Knowledge Exchange in Energy: Marine Energy

Professor Ian Bryden

Energy Systems

Funding (ca. £3m) has been secured from the European Regional Development Fund (ERDF), Scottish Government, Scottish Funding Council, Scottish Enterprise and ETP Member Universities to establish a Knowledge Exchange (KE) Network. This will catalyse and accelerate KE activity between academia and SMEs, thereby increasing innovation, advancing the development of the low carbon economy in Scotland and supporting Scotland, UK and the EU to meet ambitious 2020 low carbon targets.

Discrete Element Modeling of High-Speed Railway Embankment

Prof. Xuecheng Bian

Infrastructure and Environment

The aim is to develop a new understanding of the micromechanics of railway trackbed subjected to dynamic loads induced by high speed trains. This should lead to safer design of high-speed railway systems which require less maintenance and, therefore, are more sustainable.

Direct Drive Generator for a Tidal Turbine

Professor Markus Mueller

Energy Systems

Nova Innovation and IES are collaborating to design, build and test a direct drive generator for Nova’s tidal current turbine.

Development of an Instrument for Rapidly Detecting Cryptosporidium in Drinking Water

Dr Robert Henderson

Integrated Micro and Nano Systems

Cryptosporidium is a waterborne microorganism which causes severe diarrhoea and can be fatal for immuno-compromised individuals, infants and young children. It is estimated that Cryptosporidium contamination of drinking water results in 250-500 million cases each year in developing countries and 60,000 in the UK alone. The Cryptosporidium organism has a thick outer wall that is resistant to many conventional water treatment methods, and outbreaks are a problem even in the developed world, negatively impacting population health and economic development - daily monitoring of the water supply is required.

Current Cryptosporidium detection methods are expensive and highly time-consuming - requiring microscopic examination by skilled scientists. Furthermore, these techniques lack species and viability information, which is essential to make well-informed public health decisions. There is, therefore, a pressing need for an instrument capable of rapidly analysing drinking water samples for the presence, species and viability of Cryptosporidium microorganisms.

Development of UV and visible light active photocatalysts

Dr Xianfeng Fan

Materials and Processes

To address the need for effective vis response photocatalysts, we have synthesised WO3 and TiO2 nanowires to provide a fast transport channel for the photo-generated electrons which can retard the charge recombination. We are working on improving the visible activity of the catalysts through modifying the nanocomposites using metal (Ag, W, V, Fe, Ni) and non-metal (C, N, B, S) elements, and through the control over the microstructure or even over the crystal phase.

Development of H2 PSA (99.9% purity and 85+% recovery) Integrated with a Pre-Combustion IGCC and its Integrated Efficiency evaluation

Dr Hyungwoong Ahn

Materials and Processes

This project is aimed to develop a novel process for producing ultrapure hydrogen from synthesis gas originating from coal gasification. The coal-to-H2 process is integrated with a pre-combustion carbon capture process for de-carbonising the syngas and the integration results in improving H2 yield at the H2 Pressure Swing Adsorption (PSA).

Development and use of an advanced ZVI nanomaterial for water treatment applications

Dr Andrea Joana Correia Semiao, Dr Blanca Antizar-Ladislao

Infrastructure and Environment

Miss Underwood's doctoral research seeks to develop and test new nano-composite materials for the use in water treatment. She wishes to improve upon the existing nano zero-valent iron technologies as well as to explore how specific nanotechnologies can be applied in an economic and incentivized fashion for successful technological adoption.

Development and Evaluation of Sustainable Technologies for Flexible Operation of Conventional Power Plants

Dr Hannah Chalmers

Energy Systems

The increasing amounts of renewable energy present on the national grid reduce C02 emissions caused by electrical power but they fit into an electrical grid designed for fossil fuels. Fossil fuels can be turned on and off at will and so are very good at matching variations in load. Renewable energy in the form of wind turbines is more variable (although that variability is much more predictable than most people think) and there is a need for existing power plants to operate much more flexibly to accommodate the changing power output from wind, tidal and solar power.

Dense suspension rheology through DEM simulations

Dr. Jin Sun

Infrastructure and Environment

Mud, slurry, coffee, paints, cements, batteries and many other everyday materials have particles suspended in a liquid. We need to understand the flow behaviour to handle, and process such materials for traditional and innovative applications. Our research seeks to understand the common features of the flow behaviour of different materials using simple particle based simulations. In particular, we focus on dense suspensions where the particles occupy more than 50 % by volume of the solution.

DTOcean: Optimal Design Tools for Ocean Energy Arrays

Mr Henry Jeffrey

Energy Systems

DTOcean is a European collaborative project funded by the European Commission under the 7th Framework Programme for Research and Development, more specifically under the call ENERGY 2013-1.


Subscribe to Research Projects