All Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute or Research Theme.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
  • The principal aim is to characterise the flow properties of dense granular systems. In particular, the influence of different particle-shape representation techniques in the Discrete Element Method (DEM) is assessed. Additionally, experiments in a silo centrifuge device to determine the bulk response of granular assemblies under realistic stress states are being carried out. This work is part of T-MAPPP (Training in Multiscale Analysis of multi-Phase Particulate Processes), an FP7 Marie Curie Initial Training Network (https://www.t-mappp.eu).

    Research Themes: 

    • Granular Mechanics and Industrial Infrastructure
    Influence of including rolling resistance on flow profiles of spherical particles.
  • The modelling of cohesive soils is a challenging task of great importance in many earth moving processes. In these cases, the understanding of the interaction soil-machine is vital to try to optimize the process and avoid problems. This project aims to investigate the capabilities of DEM cohesive contact models to capture with a sufficient level of accuracy the mechanical behaviours involved in soil-machine interactions.

    Research Themes: 

    • Granular Mechanics and Industrial Infrastructure
    DEM simulations of cone penetration tests
  • For granular materials with low thermal conductivity heat transfer occurs through interstitial gases as well as through physical contacts.  Existing particle based models are ill suited to dense systems so a multi-scale approach has been used to correlate the local packing structure to the gas contribution to conductive heat transfer in dense granular systems.

    Research Themes: 

    • Granular Mechanics and Industrial Infrastructure
    Conductive heat transfer through stagnant gas and solid in a random packing.
  • The GECOMPL project aims to enable wider adoption of generalised plasticity models in practical applications. More specifically, the project proposes a detailed study of the formulation of both existing and new elastoplastic constitutive laws in the framework of generalised continua, leading to a better understanding of the different possible constitutive models and providing both the necessary theoretical basis and the appropriate numerical tools needed to use generalised continuum models in describing elastoplastic behaviour.

    Research Themes: 

    • Granular Mechanics and Industrial Infrastructure
    • Structural Engineering
    Examples of localisation behaviour for different types of Cosserat finite elements
  • TROPOS is a European collaborative project funded by the European Commission under the 7th Framework Programme for Research and Development, more specifically under the "Ocean of Tomorrow" call OCEAN 2011.1 – Multi-use offshore platforms. The TROPOS Project aims at developing a floating modular multi-use platform system for use in deep waters, with an initial geographic focus on the Mediterranean, Tropical and Sub-Tropical regions, but designed to be flexible enough so as to not be limited in geographic scope.

    Research Themes: 

    • Offshore Renewable Energy
    TROPOS Logo
  • Smart grid engineers understand the power network that the smart grid is designed for and how to communicate and process data concerning the power grid, so that it can be controlled effectively.

    The ITN (Initial Training Network) ADVANTAGE is a major inter-disciplinary and inter-sectoral project between power and communications engineering research and development communities. It will train the next generation of engineers and scientists, leading to the development of smart grid technology within Europe and internationally. This 4 year research programme is led and co-ordinated by the University of Edinburgh.

    Research Themes: 

    • Communications
    ADVANTAGE (Advanced Communications and Information processing in smart grid systems)
  • The research focuses on understanding cohesive powder flow in flexible bulk solid containers (buggies and bulk bags) with a view to develop a design methodology for ensuring reliable discharge from these containers. The project involves experimental powder flowability characterisation, finite element analysis of the stresses in flexible containers and pilot scale experiments to study the powder flow field and validate the new design methodology for reliable discharge.

    Research Themes: 

    • Granular Mechanics and Industrial Infrastructure
    A typical flexible container for storage and transport of powders, called a “powder buggy”
  • This project is both multi-scale and multi-disciplinary, and spans research areas across physics, mechanical engineering, computer science and chemical engineering. Our aim is to produce, for the first time, a general, robust and efficient open-source code for the simulation of non-continuum flows for engineering applications.

    Research Themes: 

    • Non-continuum and non-equilibrium fluid mechanics

Pages

Subscribe to All Research Projects