While the discrete element method (DEM) can provide particle-scale information to inform the design of particulate equipment, many industrial sectors are interested in large-scale modelling and scaling-up processes [1].
This project aims to create a generally applicable framework for transferring academic innovations in the modelling of particulate materials into industrial practice in the UK. The process of twin-screw granulation has been selected as an exemplar industrial process which is simulated across multiple scales using the coupled methods of population balance modelling and the discrete element method.
This project aims to develop a robust methodology to characterise the grindability of particulate products in milling operations which will in turn provide a step-change in mill fingerprinting and optimisation. This involves developing a “grindability test” to measure the comminution characteristics of the particulates which, when coupled with the computational modelling work to characterise the milling function, will evaluate the milling performance measures including energy utilisation, breakage kernels for scale-up modelling such as population balance model of the mill.