Energy Systems

postgraduate
1/A110 Alrick Building
Energy Systems
Intern and Assistant Experimental Officer (Instrumentation)
Energy Systems
Intern and Assistant Experimental Officer (Instrumentation)
Energy Systems
Research Associate
1.04-E Alrick Building
Energy Systems
Research Associate
1.04-E Alrick Building
Energy Systems
Professor of CFD and Director of Diversity & Inclusion
+44(0)131 6519022
3.106 Faraday Building
Mechanical Engineering
Energy Systems
Image
Professor David M Ingram

Employment History

David was awarded a personal chair in Computational Fluid Dynamics by the Court of the University of Edinburgh in June 2009, following his appointment as a Reader in the Institute for Energy Systems in April 2006. He is currently the Director of Diversity & Inclusion in the School of Engineering and, since July 2011 has been Director of the Industrial Doctoral Centre for Offshore Renewable Energy (IDCORE). Previously he was the Schools Director of Discipline for Engineering Mathematics, Director of Research and the Head of the Engineering Graduate School. He joined IES from Manchester Metropolitan University (MMU) where he was Reader in Scientific Computation in the Department of Computing and Mathematics. He joined MMU as lecturer in Mathematics (specialising in Numerical Analysis) following the completion of his PhD in 1992.

Major research grants

David is currently Research Director of the UK Centre for Marine Energy Research (EP/P008682/1, EP/M014738/1 & EP/I027912/1), a £5.3M, interdisciplinary, challenge led, collaborative research programme funded under the RCUK SuperGen programme that coordinates the research work of more than 100 academic and research staff across 25 UK Universities in both the wave and tidal energy sectors.

David is Director of the Industrial Doctoral Centre for Offshore Renewable Energy (EP/J500847/1), a £6.5M CDT that is training 66 EngD students from 2012-2022. IDCORE is funded by the ETI and the RCUK Energy programme and is run by a consortium of the Universities of Edinburgh, Exeter and Strathclyde, together with the Scottish Association for Marine Science and HR-Wallingford. It will be succeeded by the recently announced Industrial CDT in Offshore Renewable Energy (EP/S023933/1), funded by EPSRC and NERC, which will train an additional 50 EngD students.

He is an active member of RealTide (H2020-727689) project. He was part of the management teams for the WETFEET (H2020-641334), PolyWEC (FP7-309139), MARINA Platform (FP7-241402) and TROPOS (FP7-288192). He coordinated EquiMar (FP7-213380), a 22-partner project that developed protocols for the equitable evaluation of offshore renewable devices.

He was one of three investigators who secured £6M funding from the EPSRC to design build FloWave the worlds first, circular, combined wave and current test basin. He is presently the facility Director and recently led a submission to EPSRC’s Statements of Need for Medium Scale Research Facilities to bring together facilities in Edinburgh, Glasgow and Plymouth to form the National Renewable Energy Laboratory.

Since 1990, he has raised over £3M in research funding for his own University.

  • PhD - Computational Fluid Dynamics, Manchester Metropolitan University, 1992.
  • BSc (Hons) Mathematics, Statistics and Computing, University of Greenwich, 1988
  • PGCE (Further, Adult and Higher Education), Manchester Metropolitan University, 1995
  • Fellow of the Institute of Marine Engineering Science and Technology (IMarEST), 2019
  • Charterd Marine Scientist, CSci, CMarSci, 2019

David is a member of the Mechanical Engineering discipline and is the Course Organiser for Computational Fluid Dynamics 5 and teaches on Partial Differential Equations 3.

He is also the Course Organiser for Engineering Mathematics 2A - teaching mathematical methods for the solution of higher order Ordinary Differential Equations and introducing Partial Differential Equations

David also teaches on the IDCORE programme and on the CDT in Wind and Marine Energy Systems.

  • Free surface flow modelling
  • Development of time marching computational fluid dynamics solvers
  • Violent wave interaction with coastal structures
  • Simulation of wave and tidal current renewable energy devices.
  • Shallow water flow modelling
  • The Cartesian cut cell method for boundary fitted mesh generation
  • Technology Matching and Technology Evaluation
  • Member of the Joint Research Institute in Energy, part of the Edinburgh Research Partnership funded by the Scottish Funding Council.
  • Awarded the 1997 Busk Prize by the Council of the Royal Aeronautical Society.
Professor of CFD and Director of Diversity & Inclusion
+44(0)131 6519022
3.106 Faraday Building
Mechanical Engineering
Energy Systems
Image
Professor David M Ingram

Employment History

David was awarded a personal chair in Computational Fluid Dynamics by the Court of the University of Edinburgh in June 2009, following his appointment as a Reader in the Institute for Energy Systems in April 2006. He is currently the Director of Diversity & Inclusion in the School of Engineering and, since July 2011 has been Director of the Industrial Doctoral Centre for Offshore Renewable Energy (IDCORE). Previously he was the Schools Director of Discipline for Engineering Mathematics, Director of Research and the Head of the Engineering Graduate School. He joined IES from Manchester Metropolitan University (MMU) where he was Reader in Scientific Computation in the Department of Computing and Mathematics. He joined MMU as lecturer in Mathematics (specialising in Numerical Analysis) following the completion of his PhD in 1992.

Major research grants

David is currently Research Director of the UK Centre for Marine Energy Research (EP/P008682/1, EP/M014738/1 & EP/I027912/1), a £5.3M, interdisciplinary, challenge led, collaborative research programme funded under the RCUK SuperGen programme that coordinates the research work of more than 100 academic and research staff across 25 UK Universities in both the wave and tidal energy sectors.

David is Director of the Industrial Doctoral Centre for Offshore Renewable Energy (EP/J500847/1), a £6.5M CDT that is training 66 EngD students from 2012-2022. IDCORE is funded by the ETI and the RCUK Energy programme and is run by a consortium of the Universities of Edinburgh, Exeter and Strathclyde, together with the Scottish Association for Marine Science and HR-Wallingford. It will be succeeded by the recently announced Industrial CDT in Offshore Renewable Energy (EP/S023933/1), funded by EPSRC and NERC, which will train an additional 50 EngD students.

He is an active member of RealTide (H2020-727689) project. He was part of the management teams for the WETFEET (H2020-641334), PolyWEC (FP7-309139), MARINA Platform (FP7-241402) and TROPOS (FP7-288192). He coordinated EquiMar (FP7-213380), a 22-partner project that developed protocols for the equitable evaluation of offshore renewable devices.

He was one of three investigators who secured £6M funding from the EPSRC to design build FloWave the worlds first, circular, combined wave and current test basin. He is presently the facility Director and recently led a submission to EPSRC’s Statements of Need for Medium Scale Research Facilities to bring together facilities in Edinburgh, Glasgow and Plymouth to form the National Renewable Energy Laboratory.

Since 1990, he has raised over £3M in research funding for his own University.

  • PhD - Computational Fluid Dynamics, Manchester Metropolitan University, 1992.
  • BSc (Hons) Mathematics, Statistics and Computing, University of Greenwich, 1988
  • PGCE (Further, Adult and Higher Education), Manchester Metropolitan University, 1995
  • Fellow of the Institute of Marine Engineering Science and Technology (IMarEST), 2019
  • Charterd Marine Scientist, CSci, CMarSci, 2019

David is a member of the Mechanical Engineering discipline and is the Course Organiser for Computational Fluid Dynamics 5 and teaches on Partial Differential Equations 3.

He is also the Course Organiser for Engineering Mathematics 2A - teaching mathematical methods for the solution of higher order Ordinary Differential Equations and introducing Partial Differential Equations

David also teaches on the IDCORE programme and on the CDT in Wind and Marine Energy Systems.

  • Free surface flow modelling
  • Development of time marching computational fluid dynamics solvers
  • Violent wave interaction with coastal structures
  • Simulation of wave and tidal current renewable energy devices.
  • Shallow water flow modelling
  • The Cartesian cut cell method for boundary fitted mesh generation
  • Technology Matching and Technology Evaluation
  • Member of the Joint Research Institute in Energy, part of the Edinburgh Research Partnership funded by the Scottish Funding Council.
  • Awarded the 1997 Busk Prize by the Council of the Royal Aeronautical Society.
Professor
+44(0)131 6505602
3.104 Faraday Building
Electronics and Electrical Engineering
Energy Systems
Image
Headshot of Prof Markus Mueller wearing navy suit jacket, white shirt and blue tie

Since 2012, I have held a Personal Chair in Electrical Generation Systems at the University of Edinburgh, having been appointed as a lecturer in 2004. In 2023 I was awarded a Royal Academy of Engineering Chair in Emerging Technologies to investigate new high power density high temperature superconducting machines for net-zero energy and transport applications. From 2014 to 2018, I led a group of 26 academics as Head of the Institute for Energy Systems, and I am now co-leading Energy@Edinburgh, a cross university community of 200+ academics and researchers focussing on energy systems. I have supported  25 PhD students to successful graduation as principal supervisor, and supervised 18 PDRAs. My PhDs and PDRAs continue to work in electrical power engineering in both academia and industry.

My research focusses on electrical generators for renewable energy converters, and the development of hybrid energy systems integrating renewables and energy storage for on and off-grid use. Since 1997 I have been awarded £13m in grant funding, 75% as PI, from various sources: Royal Academy of Engineering, EPSRC, Innovate UK, The Carbon Trust, Scottish Enterprise, Wave Energy Scotland, Scottish Government, EU FP6, FP7, H2020 and ERDF, as well as direct industrial funding. As well as being part of consortia in EU grants working with eg. TU Delft, NTNU, Cork University, RWTH Aachen, Tecnalia, Fraunhofer Wind, I have also led consortia – eg. EPSRC EDRIVE (£1m)– 2 universities and 4 industrial partners; Wave Energy Scotland Project Neptune (£2.5m) – 2 universities and 7 industrial partners. Between 2010 and 2016 I led a Scottish Knowledge Exchange network, RENEW-NET, with 5 academic partners securing £1m of funding from Scottish Enterprise, Scottish Gov and ERDF, providing technical support in electrical machines and power electronics to over 100 SMEs, with 30 receiving detailed support securing jobs, new contracts and further grant funding based on our support.

I work very closely with industry, and in some cases my team has designed and built C-GEN generators for use in pre-commercial devices: eg. Mocean Energy – 10kW generator installed in their Blue-X wave device tested at sea in 2021/22; Swift Energy – 16kW generator for vertical axis wind turbine; Ladco – 6 kW generator for wind turbine tested at Arbroath; Hydrokinetic Power Generation – 25 kW generator for a tidal device to be tested in Bordeaux in 2023

My research has been widely published in top ranked journals such as IEEE, IET, IMechE and IoP. To date I have 258 journal and conference publications, and my h-index is 38 with 6294 citations, 2887 since 2017 (Google Scholar). As well as papers I co-edited the book “Electrical Drives for Direct Drive Renewable Energy Systems” (Woodhead Publishing with Prof Henk Polinder at TU Delft,  and have been awarded 3 patents. Most of my articles are in top ranked journals published by IEEE, IMechE, IET and IoP.  In 2006 I was awarded the Donald Julius Groen Prize by the IMechE with my former PhD student Dr. Nick Baker, now a Reader at Newcastle University. My PhD student’s work was recognised with best conference paper prizes at the IEEE IEMDC Conference in 2010. In 2017 I was co-author on a paper awarded the Thomas L Fagan Jr RAMS award for the best paper at the Reliability & Maintainability Symposium held in Florida.  I was part of team of 7 partners in an EU FP7 project led by NaREC (now the Offshore Renewable Energy Catapult) entitled SNAPPER involving the design and system modelling of a novel linear generator for wave energy won the Engineer Magazine Innovation Award Marine Category in 2012, and was a finalist in the IET Innovation Awards in 2012.

In 2009 I spun out NGenTec Ltd to commercialise the C-GEN technology for offshore wind, originally funded by Scottish Enterprise with £0.5m. NGenTec raised £7m from private and public sources leading to employment of 20 staff. In 2013 the university re-purchased the IP to enable me to develop C-GEN for a wider range of renewable energy applications. Since then we have sold pre-commercial demonstrators to Mocean Energy, Swift Energy, HydroKinetic Power Generation, and are undertaking design studies for other companies in, USA, Australia, Ireland, Sweden and Norway. More details on the C-GEN technology can be found at www.cgen.eng.ed.ac.uk.

 

 

 

  • BSc(Eng) 1988 Imperial College, London
  • PhD 1991 Electrical Engineering, University of Cambridge
  • CEng Chartered Engineer
  • MIET Member of the Institute of Engineering & Technology
  • Direct Drive Wave, Wind & Tidal Energy Systems
  • Design and modelling of electrical machines
  • High Temperature Superconducting Machines
  • Electrical machines for renewable energy applications
  • Low speed electrical generators for wave, wind and tidal energy converters
  • Permanent magnet and switched reluctance machines
  • Grant holder: Royal Academy of Engineering, Wave Energy Scotland, EPSRC, EU, NaREC, Industry, Scottish Enterprise, The Carbon Trust, The Energy Technology Partnership
  • IET activities: Technical Adviser to Power Conversion and Applications Network, Committee member of the IET Conference on Power Electronics,Machines and Drives (PEMD)