IIE Research Projects

Research Projects at the Institute for Infrastructure and Environment (IIE). You can search keywords within Project Titles.

We also have a number of Infrastructure and Environment PhD opportunities for postgraduate students looking to join the School.

Search keywords within Research Project titles
Project Title Principal Supervisor Project Summary
Flow and sintering of non-spherical particles in additive manufacturing

Dr. Jin Sun

The Edinburgh part of the project focues on the multi-physics modelling of particle dynamics and sintering behaviour in selective laser sintering processes. This work is an integrated part of an EPSRC funded project to develop fundamental understanding of particle behavour in additive manufacturing, collaborating with the University of Exeter. This project proposes to investigate the way polymeric powders of different shapes and sizes flow, interact and sinter in the laser sintering process, through modelling and experimental validation. Laser sintering is part of the additive manufacturing technology, known for its benefits in industries where custom made products, lightweight and complex designs are required.


A multi-scale analysis of the influence of particle shape on the mechanical response of granular materials

Dr. Stefanos Papanicolopulos

The principal aim is to characterise the flow properties of dense granular systems. In particular, the influence of different particle-shape representation techniques in the Discrete Element Method (DEM) is assessed. Additionally, experiments in a silo centrifuge device to determine the bulk response of granular assemblies under realistic stress states are being carried out. This work is part of T-MAPPP (Training in Multiscale Analysis of multi-Phase Particulate Processes), an FP7 Marie Curie Initial Training Network (https://www.t-mappp.eu).

GECOMPL: Generalised Continuum Models and Plasticity

Dr Stefanos Papanicolopulos

The GECOMPL project aims to enable wider adoption of generalised plasticity models in practical applications. More specifically, the project proposes a detailed study of the formulation of both existing and new elastoplastic constitutive laws in the framework of generalised continua, leading to a better understanding of the different possible constitutive models and providing both the necessary theoretical basis and the appropriate numerical tools needed to use generalised continuum models in describing elastoplastic behaviour.

Measurement and modelling of powder flow in flexible containers

Prof. Jin Ooi

The research focuses on understanding cohesive powder flow in flexible bulk solid containers (buggies and bulk bags) with a view to develop a design methodology for ensuring reliable discharge from these containers. The project involves experimental powder flowability characterisation, finite element analysis of the stresses in flexible containers and pilot scale experiments to study the powder flow field and validate the new design methodology for reliable discharge.

A multi-scale approach to characterising fluid contribution to conductive heat transfer in dense granular systems

Prof. Jin Ooi

Heat transfer in granular materials is a common occurrence in many industrial applications. One such application is the heating of recycled asphalt product (RAP).

Multi-scale analyses of wildland fire combustion processes

Dr Rory Hadden

Low intensity prescribed fires are often employed in forests and wildland in order to manage hazardous fuels, restore ecological function and historic fire regimes, and encourage the recovery of threatened and endangered species. Current predictive models used to simulate fire behavior during low-intensity prescribed fires (and wildfires) are empirically-based, simplistic, and fail to adequately predict fire outcomes because they do not account for variability in fuel characteristics and interactions with important meteorological variables. Experiments are being carried out at scales ranging from the fuel particle, to fuel bed, to field plot and stand scales, with an aim of better understanding how fuel consumption is related to the processes driving heat transfer, ignition and flame spread, and thermal degradation through flaming and smouldering combustion, at the scale of individual fuel particles and fuel layers. Focus is placed on how these processes, and thus fuel consumption, are affected by spatial variability in fuel particle type, fuel moisture status, bulk density, and horizontal and vertical arrangement of fuel components, as well as multi-scale atmospheric dynamics.

Fire Safety of Modern Timber Infrastructure

Dr Rory Hadden

Exposed structural timber elements within a compartment creates an additional fuel load which must be considered in design. This research focuses on quantifying this additional fuel load, and understanding conditions where after burnout of the compartment contents, the additional exposed timber may stop burning (auto-extinguish). 

Fire-fighting underventilated fires

Dr Ricky Carvel

Working with the fire brigades, and using a small-scale experimental apparatus to define appropriate fire-fighting responses to underventilated fires in sealed or partially sealed compartments. 

Cardington Test Reports (PiT Project)

Professor Asif Usmani

As part of a DETR funded PiT (Partners in Technology) project the BRE Centre for Fire Safety Engineering (previously the Structures in Fire Group) conducted extensive computational and analytical studies of the behaviour of steel-framed composite structures in fire conditions. This work was undertaken in collaboration with Corus PLC and Imperial College London. The results were presented in the form of a main report, which identified the main findings, together with numerous supplementary reports which explored various phenomena in detail. The reports produced at Edinburgh are available for download as indicated below.

Community-Based Waste-Water Treatment in International Development

Dr Martin Crapper

A project, funded by PhD scholarships from the Islamic Development Bank and EPSRC (via the Doctoral Training Grants) is underway looking at the efficiency of meso-scale waste stabilization ponds to treat municipal waste water, with resource recovery from fish farming and selling sludge for fertilizer. The ultimate aim is to demonstrate systems that can be adpoted and run by communities, particularly in urban West Africa. The pilot project is based in Cotonou, Benin.


Subscribe to IIE Research Projects