IIE Research Projects

Research Projects at the Institute for Infrastructure and Environment (IIE). You can search keywords within Project Titles.

We also have a number of Infrastructure and Environment PhD opportunities for postgraduate students looking to join the School.

Search keywords within Research Project titles
Project Title Principal Supervisorsort descending Project Summary
Fire Safety of Modern Timber Infrastructure

Dr Rory Hadden

Exposed structural timber elements within a compartment creates an additional fuel load which must be considered in design. This research focuses on quantifying this additional fuel load, and understanding conditions where after burnout of the compartment contents, the additional exposed timber may stop burning (auto-extinguish). 

Multi-scale analyses of wildland fire combustion processes

Dr Rory Hadden

Low intensity prescribed fires are often employed in forests and wildland in order to manage hazardous fuels, restore ecological function and historic fire regimes, and encourage the recovery of threatened and endangered species. Current predictive models used to simulate fire behavior during low-intensity prescribed fires (and wildfires) are empirically-based, simplistic, and fail to adequately predict fire outcomes because they do not account for variability in fuel characteristics and interactions with important meteorological variables. Experiments are being carried out at scales ranging from the fuel particle, to fuel bed, to field plot and stand scales, with an aim of better understanding how fuel consumption is related to the processes driving heat transfer, ignition and flame spread, and thermal degradation through flaming and smouldering combustion, at the scale of individual fuel particles and fuel layers. Focus is placed on how these processes, and thus fuel consumption, are affected by spatial variability in fuel particle type, fuel moisture status, bulk density, and horizontal and vertical arrangement of fuel components, as well as multi-scale atmospheric dynamics.

Behaviour, attitutde and perception of safety risk in a nationally and culturally diverse workforce

Dr Simon Smith

Considering the cultural and national backgrounds of construction workers and management to understand attitudes and perception of construction safety risk.

Engineering the Byzantine water supply: procurement, construction and operation

Dr Simon Smith

This innovative research combines construction process modelling and contemporary network software to gain new insights to conceptualise the construction and distribution of the city’s hydraulic networks.

GECOMPL: Generalised Continuum Models and Plasticity

Dr Stefanos Papanicolopulos

The GECOMPL project aims to enable wider adoption of generalised plasticity models in practical applications. More specifically, the project proposes a detailed study of the formulation of both existing and new elastoplastic constitutive laws in the framework of generalised continua, leading to a better understanding of the different possible constitutive models and providing both the necessary theoretical basis and the appropriate numerical tools needed to use generalised continuum models in describing elastoplastic behaviour.

A multi-scale analysis of the influence of particle shape on the mechanical response of granular materials

Dr. Stefanos Papanicolopulos

The principal aim is to characterise the flow properties of dense granular systems. In particular, the influence of different particle-shape representation techniques in the Discrete Element Method (DEM) is assessed. Additionally, experiments in a silo centrifuge device to determine the bulk response of granular assemblies under realistic stress states are being carried out. This work is part of T-MAPPP (Training in Multiscale Analysis of multi-Phase Particulate Processes), an FP7 Marie Curie Initial Training Network (https://www.t-mappp.eu).

Finite element implementation and detailed comparison of generalised plasticity models

Dr. Stefanos Papanicolopulos

The lack of an internal length scale parameter in classical continua leads to unrealistic numerical modelling of some phenomena related to the microstructure of the material such as size effect and strain localisation.

High Performance Computing Support for United Kingdom Consortium on Turbulent Reacting Flows (UKCTRF)

Dr Stephen Welch

The proposed UK Consortium on Turbulent Reacting Flows will perform high-fidelity computational simulations (i.e. Reynolds Averaged Navier-Stokes simulations (RANS), Large Eddy Simulation (LES) and Direct Numerical Simulations (DNS)) by utilising national High Performance Computing (HPC) resources to address the challenges related to energy through the fundamental physical understanding and modelling of turbulent reacting flows. Engineering applications range from the formulation of reliable fire-safety measures to the design of energy-efficient and environmentally-friendly internal combustion engines and gas turbines.

FireComp: Modelling the thermo-mechanical behaviour of high pressure vessel in composite materials when exposed to fire conditions

Dr Stephen Welch

Hydrogen is expected to be highly valuable energy carrier for the 21st century as it should participate in answering main societal and economical concerns. To exploit its benefits at large scale, further research and technological developments are required. In particular, the storage of hydrogen must be secured. Even if burst in service of pressure vessels in composite material is very unlikely, when exposed to a fire, they present safety challenges imposing to correctly size their means of protection.

Intelligent Egress: Real time modelling based upon sensor data to steer evacuation in case of fire

Dr Stephen Welch

Intelligent egress is a novel approach to enhancing evacuations from fire emergencies.  It combines sensor-linked simulations and route-planning tools to provide real-time information to occupants on efficient egress.  The specific issues associated with disabilities and mobility impairment are addressed.  Mechanisms to provide “way finding” information to relevant end users are being studied.  Detailed guidance and recommendations on use of such systems will be developed.

Pages

Subscribe to IIE Research Projects