Engineering Discipline:
- Civil and Environmental Engineering
Biography:
Dr Welch has a PhD in combustion and over 20 years of experience in fire research and teaching. He worked for a decade at BRE's Fire Research Station, including full-scale fire tests at BRE Cardington, before joining the BRE Centre for Fire Safety Engineering at the University of Edinburgh in 2004. His research spans a range of topics related to computational simulation of fire and structures and has had involvement as first or second supervisor of over 20 graduated PhD students (9 current) and served as examiner for over 20 more (including external examiner appointments). His teaching is related to fire safety engineering practice, providing a training in engineering approaches to applied problems, with critique and analysis of relevant regulations, codes and design principles. He is Programme Director for the one-year MSc Structural and Fire Safety Engineering (SAFE), now in its tenth year (50+ graduates), and a management board member for the International Master in Fire Safety Engineering (IMFSE), now in its eighth year (100+ graduates). He was Discipline Programme Manager for Civil & Environmental Engineering 1/1/14-30/4/18.
Academic Qualifications:
- BA hons Engineering, Cambridge University
- MSc Automotive product engineering, Cranfield University
- PhD (Computational modelling of diesel engine smoke emission), Cranfield University
Professional Qualifications and Memberships:
AIFireE, AIOP (Combustion Physics subgroup), IAFSS newsletter associate editor
Teaching:
Programme Director and Personal Tutor for Structural & Fire Safety Engineering (SAFE) MSc
Management Board, International Master in Fire Safety Engineering (IMFSE)
Current teaching: Fire Safety Engineering 4/IMFSE, Numerical Methods and Computing 2, Engineering 1
Previous teaching: Fire Science Laboratory 5/SAFE/IMFSE, Fire Safety Engineering Design Project 5, Civil Engineering 1
Research Interests:
Fire safety engineering
Active on the development and validation of computer modelling methods for fire-related problems in building and transport applications, spanning combustion, heat transfer, soot and toxic emissions, structural thermal response, sensor-steering and human response. Current research leadership in fire structure coupling in large buildings with travelling fires (RFCS TRAFIR), characterising thermo-mechanical response of composite and steel pressure vessels in fire (EU FCH-JU FireComp), fire safety in modern energy efficient buildings and facade fire (Rockwool), fire modelling using HPC resources (UKCTRF/RFSDTB), intelligent egress based on sensor-linked models (BRE Trust), ICU evacuations (NHS Lothian/Trenton Fire), generalised structural-fire frameworks (OpenSees), glazing in fire, etc.
Specialities:
- Travelling fires, including fire spread in post-flashover fires using High Performance Computing (HPC) resources
- Fire-structure coupling methodologies for large/complex spaces
- Sensor-linked fire and egress models, including ICU evacuations
- Fire hazard prediction, including smoke and toxic species
- Thermo-mechanical response of composite and steel vessels in fire
- Fire behaviour of energy efficient constructions and facade fires
Further Information:
Room 3.08, Alexander Graham Bell building http://www.ed.ac.uk/maps/maps?building=alexander-graham-bell-building