This theme hosts both experiments and computations, with an emphasis on multiscale and multiphase fluid systems undergoing heat transfer. Topics include phase change, wetting and associated capillary phenomena, and boiling (e.g. at microfluidic scales). The theme leader is Professor Khellil Sefiane.
In this theme the work balance leans more towards experiments, but computations are also performed. This theme has an emphasis on mixing and reacting jets, phase and thermodynamic state changes, mixing dynamics (e.g. spray-induced turbulence), chemical reaction, and the effect of these process on performance of technological devices. A very large experimental effort is devoted to the use, adaptation, and development of entirely new laser diagnostic techniques for sprays and chemically reacting flows. The theme leader is Professor Mark Linne.
This theme targets a range of multi-scale flow problems that target essential engineering challenges of the 21st century in health, transport, water and energy. Our research spans fundamental engineering science at the nano/micro/meso/macro scales, multi-scale method development, highly parallel software development that runs on supercomputers, and industry-focused engineering applications.