Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Title Principal Supervisor Research Institutes Project Summary
MacSeNet: Machine Sensing Training Network

Professor Mike Davies

Imaging, Data and Communications

The aim of this Innovative Training Network is to train a new generation of creative, entrepreneurial and innovative early stage researchers (ESRs) in the research area of measurement and estimation of signals using knowledge or data about the underlying structure.

SpaRTaN: Sparse Representations and Compressed Sensing Training Network

Professor Mike Davies

Imaging, Data and Communications

The aim of this Initial Training Network is to train a new generation of interdisciplinary researchers in sparse representations and compressed sensing, contributing to Europe’s leading role in scientific innovation.

Robust Repeatable Respiratory Monitoring in EIT

Professor Hugh McCann

Imaging, Data and Communications

The project aims at developing a new electrical impedance tomography (EIT) device for medical use. This device, called ReMEIT, should enable 3D absolute conductivity image reconstruction. To achieve this goal the project intends to capture the exact positions of the measuring electrodes and the exact thoracic shape using an optical shape capture device. These are absolutely novel approaches in EIT imaging that, if successful, could represent an immense progress in EIT research and a big step towards reliable clinical use of this technology. The project partners not only plan to develop the device but they also propose a strategy for its validation under invivo conditions. At first, healthy volunteers with no history of lung disease will be examined by ReMEIT and, later, the EIT device will be applied in critically ill patients suffering from various pulmonary diseases. In the former case, reference data will be obtained by magnetic resonance imaging (MRI), in the latter one, routine chest X-ray, computed tomography (CT)and MRI data will be utilised.

Tackling the looming spectrum crisis in Wireless Communication

Professor Harald Haas

Imaging, Data and Communications

The proposed work in this EPSRC Fellowship is aimed at providing radical new solutions to this fundamental and far reaching challenge. A key pillar of the proposed work is the extension of the RF spectrum to include the infrared as well as the visible light spectra. The recent advancements in light emitting diode (LED) device technology now seems to let the vision of using light for high speed wireless communications become a reality.

Optical Free-Space Backhaul and Power for Energy Autonomous Small Cells

Professor Harald Haas

Imaging, Data and Communications

The central aim of the project is the design of a novel simple structure for a communication base station. Its operation will be based on off-the-shelf optical components such as white LEDs, laser-diodes and photo-diodes.

Rural and Remote Ubiquitous Broadband Wireless Access

Dr Tharmalingam Ratnarajah

Imaging, Data and Communications

This research network would bring together key research groups that are in the vanguard of developing novel technologies and algorithms for spectrally efficient generation wireless networks in the UK and India.

Massive MIMO for Future Wireless Communication Networks

Dr Tharmalingam Ratnarajah

Imaging, Data and Communications

The spectrum crunch is a global phenomenon, where wireless networks constrained by scarce spectrum resource cannot keep pace with the explosion in mobile broadband use, particularly at a time when smartphones and tablets are becoming even more prevalent and heavily used. Every new opportunity has to be maximally exploited to cope with this spectrum deficit and meet the demands of explosive broadband usage by pushing more data through existing spectrum. Massive multiple-input multiple-output (MIMO), an advanced antenna technology only developed in 2010 offers one such opportunity.

Sensor Signal Processing

Professor Bernie Mulgrew

Imaging, Data and Communications

The fundamental challenges for signal processing are: how best to sense; how to distribute the processing and communication of the data within the network to maximize performance and minimize cost; how to analyze it to extract the salient information.

Development and use of an advanced ZVI nanomaterial for water treatment applications

Dr Andrea Joana Correia Semiao, Dr Blanca Antizar-Ladislao

Infrastructure and Environment

Miss Underwood's doctoral research seeks to develop and test new nano-composite materials for the use in water treatment. She wishes to improve upon the existing nano zero-valent iron technologies as well as to explore how specific nanotechnologies can be applied in an economic and incentivized fashion for successful technological adoption.

Adsorption Materials and Processes for Carbon Capture from Gas-Fired Flower Plants - AMPGas

Professor Stefano Brandani

Materials and Processes

The 2008 Climate Change Act sets a legally binding target of 80% CO2 emissions reductions by 2050. To meet this challenge the UK Climate Change Committee (CCC) issues regular carbon budgets with recommendations on the way in which the UK needs to reduce its emissions. In its 2010 4th carbon budget, there is a clear plan for power sector decarbonation to 2030, by investing in 30-40 GW of low carbon capacity with a value of the order of £100 billion. This would drive average emissions from generation down to around 50gCO2/kWh by 2030 and includes 4 CCS demonstration plants by 2020.

Pages

Subscribe to Research Projects