All Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute or Research Theme.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
  • The spectrum crunch is a global phenomenon, where wireless networks constrained by scarce spectrum resource cannot keep pace with the explosion in mobile broadband use, particularly at a time when smartphones and tablets are becoming even more prevalent and heavily used. Every new opportunity has to be maximally exploited to cope with this spectrum deficit and meet the demands of explosive broadband usage by pushing more data through existing spectrum. Massive multiple-input multiple-output (MIMO), an advanced antenna technology only developed in 2010 offers one such opportunity.

    Research Themes: 

    • Communications
  • The research focuses on understanding cohesive powder flow in flexible bulk solid containers (buggies and bulk bags) with a view to develop a design methodology for ensuring reliable discharge from these containers. The project involves experimental powder flowability characterisation, finite element analysis of the stresses in flexible containers and pilot scale experiments to study the powder flow field and validate the new design methodology for reliable discharge.

    Research Themes: 

    • Granular Mechanics and Industrial Infrastructure
    A typical flexible container for storage and transport of powders, called a “powder buggy”
  • The research focuses on understanding cohesive powder flow in flexible bulk solid containers (buggies and bulk bags) with a view to develop a design methodology for ensuring reliable discharge from these containers. The project involves experimental powder flowability characterisation, finite element analysis of the stresses in flexible containers and pilot scale experiments to study the powder flow field and validate the new design methodology for reliable discharge.

    Research Themes: 

    • Granular Mechanics and Industrial Infrastructure
    A typical flexible container for storage and transport of powders, called a “powder buggy”
  • Pore wetting is a principal control of the multiphase flows through porous media. However, the contact angle measurement on other than flat surfaces still remains a challenge. In order to indicate the wetting in a small pore, we developed a new pore contact angle measurement technique to directly measure the contact angles of fluids and gas/liquid/supercritical CO2 in micron-sized pores under ambient and reservoir conditions in this study, as well as the effect of chemical functional groups on pore contact angle.

    Research Themes: 

    • Multiphase Flows and Transport Phenomena
  • Membrane processes are a promising alternative to the more classical post-combustion capture technologies due to the reduced maintenance of the process, the absence of dangerous solvents and their smaller footprint. This project aims at supporting the development of new mixed matrix membranes for post-combustion applications. Mixed matrix membranes (MMMs) are composite materials formed by embedding inorganic fillers into a polymeric matrix in order to overcome the upper bound and combine the characteristics of the two solid phases: mechanical properties, economical processing capabilities and permeability of the polymer and selectivity of the filler. Despite several studies on the concept, the interactions between the two phases and their effect on the transport properties are not well understood. Yet, this fundamental knowledge is crucial in order to design the reliable materials needed for real-world-applications.

    Research Themes: 

    • Carbon Capture and Separation Processes
  • Carbon capture from power stations and industrial sources is an essential pillar in the effort of reducing greenhouse gas emissions in order to achieve the legally binding target set by the 2008 Climate Change Act of 80% reductions by 2050. The current state-of-the-art technologies for post-combustion capture (including retrofit options for existing plants) are based on amine scrubbers, but inherent energy requirements make this an expensive option and significant research is aimed at the development of next generation carbon capture processes that reduce the cost of capital equipment and the energy needed.

    Research Themes: 

    • Carbon Capture and Separation Processes
  • This project will develop improved methodologies and tools for assessing and providing more detailed information on complex system-user interactions, which will be further implemented in an integrated framework for system state identification, system or plant/component condition assessment and evaluation of the overall system performance (all currently performed in a number of separate studies).

    Research Themes: 

    • Power Systems
  • The exploration and development of deeper wells with heavier and more viscous oils, requiring greater operating pressures and more fracture to fissures to release the oils. This results in significantly increased sand content that has the potential to bring about a fundamental shift in flow behaviour. This project aims to investigate the potential – and develop – a coupled smooth particle hydrodynamics (SPH) and discrete element method (DEM) model to simulate high-pressure multi-phase flows with support from an extensive experimental programme and industrial collaboration.

    Research Themes: 

    • Granular Mechanics and Industrial Infrastructure
  • We examine the rheology of granular dense suspensions using computer simulations with discreste particles and develop constitutive models for flow of such suspensions.

    Research Themes: 

    • Granular Mechanics and Industrial Infrastructure

Pages

Subscribe to All Research Projects