Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Title Principal Supervisor Research Institutes Project Summary
IFPRI Grindability Project: modelling, measurement and mill fingerprinting

Prof. Jin Ooi

Infrastructure and Environment

This project aims to develop a robust methodology to characterise the grindability of particulate products in milling operations which will in turn provide a step-change in mill fingerprinting and optimisation.  This involves developing a “grindability test” to measure the comminution characteristics of the particulates which, when coupled with the computational modelling work to characterise the milling function, will evaluate the milling performance measures including energy utilisation, breakage kernels for scale-up modelling such as population balance model of the mill.

Efficient DEM simulation of large systems of non-spherical particles

Dr. Kevin Hanley

Infrastructure and Environment

To enlarge the scale of discrete element modelled particulate system from spherical to nonspherical; to increase the computational efficiency of simulating the nonspherical system; to provide more insights of particulate solid mechanics in engineering applications.

Finite element implementation and detailed comparison of generalised plasticity models

Dr. Stefanos Papanicolopulos

Infrastructure and Environment

The lack of an internal length scale parameter in classical continua leads to unrealistic numerical modelling of some phenomena related to the microstructure of the material such as size effect and strain localisation.

Flow and sintering of non-spherical particles in additive manufacturing

Dr. Jin Sun

Infrastructure and Environment

The Edinburgh part of the project focues on the multi-physics modelling of particle dynamics and sintering behaviour in selective laser sintering processes. This work is an integrated part of an EPSRC funded project to develop fundamental understanding of particle behavour in additive manufacturing, collaborating with the University of Exeter. This project proposes to investigate the way polymeric powders of different shapes and sizes flow, interact and sinter in the laser sintering process, through modelling and experimental validation. Laser sintering is part of the additive manufacturing technology, known for its benefits in industries where custom made products, lightweight and complex designs are required.


A multi-scale analysis of the influence of particle shape on the mechanical response of granular materials

Dr. Stefanos Papanicolopulos

Infrastructure and Environment

The principal aim is to characterise the flow properties of dense granular systems. In particular, the influence of different particle-shape representation techniques in the Discrete Element Method (DEM) is assessed. Additionally, experiments in a silo centrifuge device to determine the bulk response of granular assemblies under realistic stress states are being carried out. This work is part of T-MAPPP (Training in Multiscale Analysis of multi-Phase Particulate Processes), an FP7 Marie Curie Initial Training Network (

GECOMPL: Generalised Continuum Models and Plasticity

Dr Stefanos Papanicolopulos

Infrastructure and Environment

The GECOMPL project aims to enable wider adoption of generalised plasticity models in practical applications. More specifically, the project proposes a detailed study of the formulation of both existing and new elastoplastic constitutive laws in the framework of generalised continua, leading to a better understanding of the different possible constitutive models and providing both the necessary theoretical basis and the appropriate numerical tools needed to use generalised continuum models in describing elastoplastic behaviour.

TROPOS: Modular Multi-use Deep Water Offshore Platform Harnessing and Servicing Mediterranean, Subtropical and Tropical Marine and Maritime Resources

Professor David Ingram

Energy Systems

TROPOS is a European collaborative project funded by the European Commission under the 7th Framework Programme for Research and Development, more specifically under the "Ocean of Tomorrow" call OCEAN 2011.1 – Multi-use offshore platforms. The TROPOS Project aims at developing a floating modular multi-use platform system for use in deep waters, with an initial geographic focus on the Mediterranean, Tropical and Sub-Tropical regions, but designed to be flexible enough so as to not be limited in geographic scope.

Measurement and modelling of powder flow in flexible containers

Prof. Jin Ooi

Infrastructure and Environment

The research focuses on understanding cohesive powder flow in flexible bulk solid containers (buggies and bulk bags) with a view to develop a design methodology for ensuring reliable discharge from these containers. The project involves experimental powder flowability characterisation, finite element analysis of the stresses in flexible containers and pilot scale experiments to study the powder flow field and validate the new design methodology for reliable discharge.

A multi-scale approach to characterising fluid contribution to conductive heat transfer in dense granular systems

Prof. Jin Ooi

Infrastructure and Environment

Heat transfer in granular materials is a common occurrence in many industrial applications. One such application is the heating of recycled asphalt product (RAP).

The First Open-Source Software for Non-Continuum Flows in Engineering

Prof Jason Reese

Multiscale Thermofluids

This project is both multi-scale and multi-disciplinary, and spans research areas across physics, mechanical engineering, computer science and chemical engineering. Our aim is to produce, for the first time, a general, robust and efficient open-source code for the simulation of non-continuum flows for engineering applications.


Subscribe to Research Projects