All Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute or Research Theme.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
  • This project is concerned with socially integrated mitigation of multiple structural risks in the urban environment, with a focus on the linked risks of earthquake and fire. Fire is the largest contributor to building damage following earthquakes. To date, this research area has largely been ignored as it crosses the boundaries between the knowledge areas of earthquake and fire safety engineering. The combination of factors adds to the challenges in risk estimation already existing in each distinct area. There is currently no universally accepted method for accounting for the effect of strengthening practices on building vulnerability to earthquakes (let alone earthquakes followed by fire). In the case of fire safety engineering, few credible techniques for damage estimation or risk-based design currently exist due to a lack of requisite input data. This project will develop, through large scale structural testing and computational analysis, new technical engineering solutions to these problems. And, for the first time, these technical engineering solutions will be developed explicitly accounting for the social context within which they are to be enacted.

    Research Themes: 

    • Fire Safety Engineering
  • This project will design, build, install and operate an open ocean 4.5MW tidal energy farm in the Inner Sound in the Pentland Firth, off the Northern coast of Scotland. The project ("Clearwater") will demonstrate the technical and economic feasibility of a multi-turbine tidal energy array, an essential step to catalyse development of commercial projects in the EU ocean energy industry. Project Clearwater provides a credible, robustly implemented transition from high cost single turbine demonstration deployments of marine turbines to economically viable multi-hundred turbine arrays in oceans and managed water assets across Europe and the wider global market.

    Research Themes: 

    • Offshore Renewable Energy
  • A project, funded by PhD scholarships from the Islamic Development Bank and EPSRC (via the Doctoral Training Grants) is underway looking at the efficiency of meso-scale waste stabilization ponds to treat municipal waste water, with resource recovery from fish farming and selling sludge for fertilizer. The ultimate aim is to demonstrate systems that can be adpoted and run by communities, particularly in urban West Africa. The pilot project is based in Cotonou, Benin.

    Research Themes: 

    • Environmental Engineering
    The Pilot Plant in Cotonou
  • The hydrodynamic performance of marine devices is crucial from the energy efficiency point of view. A well-designed drag reducing technique for ship hulls would decrease the unsustainable fossil fuel consumption and pollution, which accounts for 3% of the global carbon dioxide emission. The drag experienced by, for instance, a tidal turbine blade, also limits the extractable power from the tidal stream and, therefore, a drag reduction would increase the capacity factor of tidal turbines and decrease the cost of renewable energy. Our research aims to reduce the experienced drag with compliant coatings.

    Research Themes: 

    • Naval Architecture
    • Materials and Structures
  • Compliant coatings can decrease fuel consumption of marine vehicles and enhance energy efficiency of marine energy converters

    Research Themes: 

    • Offshore Renewable Energy
  • Marine renewable energy has been receiving increasing attention in both political and industrial circles. There has been limited deployment to date, and the industry is only now entering the development phase of the Research, Development, Demonstration and Deployment (RDD&D) process.

    Research Themes: 

    • Offshore Renewable Energy
  • The modelling of cohesive soils is a challenging task of great importance in many earth moving processes. In these cases, the understanding of the interaction soil-machine is vital to try to optimize the process and avoid problems. This project aims to investigate the capabilities of DEM cohesive contact models to capture with a sufficient level of accuracy the mechanical behaviours involved in soil-machine interactions.

    Research Themes: 

    • Granular Mechanics and Industrial Infrastructure
  • DTOcean is a European collaborative project funded by the European Commission under the 7th Framework Programme for Research and Development, more specifically under the call ENERGY 2013-1.

    Research Themes: 

    • Offshore Renewable Energy
    DTOcean logo
  • The increasing amounts of renewable energy present on the national grid reduce C02 emissions caused by electrical power but they fit into an electrical grid designed for fossil fuels. Fossil fuels can be turned on and off at will and so are very good at matching variations in load. Renewable energy in the form of wind turbines is more variable (although that variability is much more predictable than most people think) and there is a need for existing power plants to operate much more flexibly to accommodate the changing power output from wind, tidal and solar power.

    Research Themes: 

    • Power Systems
  • Miss Underwood's doctoral research seeks to develop and test new nano-composite materials for the use in water treatment. She wishes to improve upon the existing nano zero-valent iron technologies as well as to explore how specific nanotechnologies can be applied in an economic and incentivized fashion for successful technological adoption.

    Research Themes: 

    • Environmental Engineering

Pages

Subscribe to All Research Projects