Research Projects

All research projects at the School of Engineering. You can search keywords within Project title and filter by Research Institute.

We also have many exciting Engineering PhD Opportunities for postgraduate students looking to join the School.

Search within Project titles
Project Titlesort descending Principal Supervisor Research Institutes Project Summary
A multi-scale analysis of the influence of particle shape on the mechanical response of granular materials

Dr. Stefanos Papanicolopulos

Infrastructure and Environment

The principal aim is to characterise the flow properties of dense granular systems. In particular, the influence of different particle-shape representation techniques in the Discrete Element Method (DEM) is assessed. Additionally, experiments in a silo centrifuge device to determine the bulk response of granular assemblies under realistic stress states are being carried out. This work is part of T-MAPPP (Training in Multiscale Analysis of multi-Phase Particulate Processes), an FP7 Marie Curie Initial Training Network (https://www.t-mappp.eu).

A multi-scale approach to characterising fluid contribution to conductive heat transfer in dense granular systems

Prof. Jin Ooi

Infrastructure and Environment

For granular materials with low thermal conductivity heat transfer occurs through interstitial gases as well as through physical contacts.  Existing particle based models are ill suited to dense systems so a multi-scale approach has been used to correlate the local packing structure to the gas contribution to conductive heat transfer in dense granular systems.

A multi-scale approach to characterising fluid contribution to conductive heat transfer in dense granular systems

Prof. Jin Ooi

Infrastructure and Environment

Heat transfer in granular materials is a common occurrence in many industrial applications. One such application is the heating of recycled asphalt product (RAP).

A novel diagnostic tool: from structural health monitoring to tissue quality prediction

Dr Pankaj Pankaj

Bioengineering

As quality of life constantly improves, the average lifespan will continue to increase. The bad news is that tissue degradation due to wear and tear in an aged body is inevitable and is different from person to person. Fortunately recent advances in science and technology have enabled us to work towards personalised medicine. This project, by an interdisciplinary team from four different UK Universities (Liverpool, Heriot Watt, Durham and Edinburgh) with distinct areas of expertise, aims to predict patient-specific tissue quality which is essential in devising treatments plans. While our primary concern in this study is the bone tissue, the developed framework will apply to other tissues having porous or complex microstructure.

A numerical investigation on the effect of different paint coatings on ship resistance in real sailing conditions

Dr Ignazio Maria Viola

Energy Systems

In recent years, experimental investigations have been performed on the effect on drag foul release coatings at the University of Newcastle in partnership with International Paint Ltd.

A systematic study of physical layer network coding: From Information-Theoretic Understanding to Practical DSP Algorithm Design

Dr Tharmalingam Ratnarajah

Digital Communications

High spectral efficiency is the holy grail of wireless networks due to the well-known scarcity of radio spectrum. While up to recently there seemed to be no way out of the apparent end of the road in spectral efficiency growth, the emerging approach of Network Coding has cast new light in the spectral efficiency prospects of wireless networks [1]. Initial results have demonstrated that the use of network coding increases the spectral efficiency up to 50% [2, 3]. Such a significant performance gain is crucial for many important bandwidth-hungry applications such as broadband cellular systems, wireless sensor networks, underwater communication scenarios, etc.

ACCA: Atmospheric Carbon Capture

Professor Khellil Sefiane

Materials and Processes

Carbon emissions from fossil fuel combustion and change in land use are forcing a rapid increase in atmospheric CO2 levels leading to climate change. The initial implementation of plans to reduce the levels of CO2 is based on a combination of increased use of renewable energy and the implementation of carbon capture and storage from industrial sources and power plants on a wide scale.

ADEL: Advanced Dynamic spectrum 5G mobile networks Employing Licensed shared access

Prof Tharmalingam Ratnarajah

Digital Communications

Based on the negotiation meeting held in Brussels on 24th July 2013 under the 'Seventh Framework Programme for Research of the European Commission',  ADEL's aim is to develop future heterogeneous wireless networks of  higher capacity and energy efficiency thus setting the road-map for the adoption of spectrum flexible broadband wireless systems by 2020.

 

ARIES: Adaptation and Resilience in Energy Systems

Professor Gareth Harrison

Energy Systems

The energy supply sector is undergoing massive technological changes to reduce its greenhouse gas emissions. At the same time, the climate is progressively changing creating new challenges for energy generation, networks and demand. The Adaptation and Resilience in Energy Systems (ARIES) project aims to understand how climate change will affect the UK gas and electricity systems and in particular its 'resilience'.

Adsorption Materials and Processes for Carbon Capture from Gas-Fired Flower Plants - AMPGas

Professor Stefano Brandani

Materials and Processes

The 2008 Climate Change Act sets a legally binding target of 80% CO2 emissions reductions by 2050. To meet this challenge the UK Climate Change Committee (CCC) issues regular carbon budgets with recommendations on the way in which the UK needs to reduce its emissions. In its 2010 4th carbon budget, there is a clear plan for power sector decarbonation to 2030, by investing in 30-40 GW of low carbon capacity with a value of the order of £100 billion. This would drive average emissions from generation down to around 50gCO2/kWh by 2030 and includes 4 CCS demonstration plants by 2020.

Pages

Subscribe to Research Projects