Mechanical Engineering

Whether it is the substantial cooling requirements of future data centres or energy-dense batteries for next-generation electric vehicles, the need for energy-efficient electronics cooling systems is ubiquitous. This is because while recent developments have produced ever-smaller and ever-denser devices, heat fluxes comparable to the surface of the Sun can be generated at hot spots, producing high temperatures that adversely impact their performance and raise risk of catastrophic failure. In the last decade and a half, novel 2D nanomaterials have been developed with unique thermal properties (e.g. ultrahigh thermal conductivity). These nanomaterials can be used to form surface coatings to enhance heat transfer from the extremely hot surfaces of electronic devices into the adjacent coolant liquid. 

However, our understanding of thermal transport at this nanomaterial/liquid interface is currently limited. For 2D nanocoatings, the nanomaterial can be either carbon-based (graphene nanoparticles or nanoflakes, nanopores, graphene oxide nanosheets etc), boron-based (boron nitride nanosheets, nanotubes, etc) or hybrid (e.g. boron carbon nitride). Similarly, while water is the most studied coolant liquid, realistic applications involve dielectric fluids (e.g. benzene, pentane). Molecular dynamics (MD) simulations represent a powerful tool to study such interfaces, but MD of nanomaterial/liquid interfaces require well-calibrated intermolecular potentials, which don’t currently exist. This project will rely on recent advances in neural networks to develop machine learning potentials (MLPs) for MD simulations of realistic nanomaterial/coolant-liquids and use these to gain fundamental insights into interfacial thermal transport. The goals are to:

1) run ab-initio molecular simulations to sample relevant nanomaterial/liquid interfaces.

2) construct new MLPs by using generated data from 1) and validate them.

3) use MLPs to run classical MD simulations and characterise thermal transport.

This PhD project will be based within the School of Engineering, University of Edinburgh. This PhD project will be supervised by Dr Rohit Pillai and Dr Eleonora Ricci, and the successful applicant will join an active, friendly, and collaborative research group (see https://multiscaleflowx.github.io/). Our group makes extensive use of ARCHER2 – the UK’s national supercomputer, which is based in Edinburgh. This PhD will give the successful applicant the skills and experience to become a future leader in either academia or industry. The supervisors will provide the successful applicant with exceptional research and training opportunities, including:

• regular weekly meetings to discuss the research progress.

• opportunities for travel to participate in workshops/summer schools dedicated to advanced computational methods, as well as present results in international conferences.

• training and experience in state-of-the-art engineering research.

• mentoring from other investigators and experienced postdoctoral researchers.

• exceptional career development opportunities with strong institutional support of early career researchers.

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree. Further information on English language requirements for EU/Overseas applicants.

Tuition fees + stipend are available for Home/EU and International students

Further information and other funding options.

On

This PhD project aims to design heat integration strategies within multi-vector energy systems to enhance overall system flexibility and efficiency.

The route to net zero faces two main challenges: first, the increasing integration of non-dispatchable and variable renewable energy resources, such as wind and solar power, creates significant challenges for energy systems, notably in terms of maintaining reliability and balancing supply with demand; and, second, there is almost no progress and not even a credible roadmap for heat decarbonisation (low temperature space heating as well as high temperature industrial heat). By focusing on the thermal aspects of energy systems, and particularly on strategies for efficient heat integration, this research aims to provide novel solutions that enhance system stability and provide affordable and sustainable heat.

The project will investigate heat integration techniques across various levels of the energy system, including industrial processes, district heating networks, and residential heating solutions. Key areas of focus will include the integration of advanced thermal storage technologies, the utilisation of waste heat recovery, and the implementation of innovative heat pump technologies. This multi-scale approach ensures that the project addresses both high-grade industrial heat and low-grade residential heat requirements.

A significant component of the research will involve the development of mathematical models and simulation tools to evaluate potential heat integration scenarios. The models and tools will be built on existing open-source tools in the Institute for Energy Systems, commercials tools such as TRNSYS and open-source tools such as PyPSA. These tools will help in identifying optimal ways to deploy thermal energy storage and recovery, thus enabling better management of renewable generation variability. The methodologies developed will consider not only energy efficiency but also economic and environmental impacts, ensuring that the solutions are sustainable both technically and financially.

The candidate will develop a wide range of skills in simulation, optimisation, and data analysis which are widely applicable to future career development. Additionally, there are opportunities for engaging with an open and inclusive community of open-source energy system developers both within IES and globally. 

Overall, this PhD project offers a comprehensive approach to enhancing system flexibility through heat integration, addressing critical challenges in the transition to a more sustainable and reliable energy future.

Please note this position will remain open until filled.

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree. Further information on English language requirements for EU/Overseas applicants.

Essential background: 

  • 2.1 or above (or equivalent) in Engineering, Mathematics, Physics, Energy Engineering/Economics, Informatics, or similar
  • Programming in Python, Julia or other high-level language

Desirable background:

  • Energy system modelling and optimisation
  • Data analysis, optimisation and/or machine learning
  • Experience in thermal energy system modelling

Applications are welcomed from self-funded students, or students who are applying for  scholarships from the University of Edinburgh or elsewhere

Further information and other funding options.

Off

This PhD project delves into the dynamics of residential energy consumption, system flexibility, and employs the systems transition engineering processes (STEPs) to tackle energy poverty with novel utility network-to-end-use flexibility opportunities. The research is framed around the critical need to create resilient urban energy systems that not only adapt to fast-paced technological and environmental changes but also promote energy equity and efficiency.

In urban environments, residential areas are key consumers of energy and greatly influence the overall dynamics of urban energy flow. The primary aim of this research is to innovate, model and optimise the intake and distribution of energy in residential sectors and examine how these modifications can alleviate energy poverty, characterised by lack of access to reliable and affordable energy services. This involves understanding the specific energy needs of underserved populations and integrating solutions that ensure equitable energy distribution.

Transition engineering principles guide the project's approach, integrating systems thinking, predictive modelling, and simulation techniques to explore novel and practical engineering adjustments for improving system flexibility and reliability amid increasing green energy integration and fluctuating demand. Expertise will be gained in grid and network technology and commercial operations, and energy end uses—from heating and lighting to appliances and electronic devices. The project will assess initiatives like participatory demand-response technologies, energy-efficient retrofitting, integrated storage, and community energy systems.

Moving beyond technical analysis, the study will incorporate socioeconomic data to paint a more accurate picture of energy consumption patterns and barriers to energy access in various residential demographics. Simulation tools will evaluate how different interventions might impact energy affordability and reliability at the household level and their wider effects on the energy system's flexibility and sustainability.

Policy implications will also be a significant focus of this research. By identifying regulatory and institutional barriers to equitable energy distribution and system flexibility, the project aims to suggest robust policy measures that can support broad adoption of efficient and equitable energy solutions.

The expected contribution of this PhD project is pioneering energy transition shifts for adaptable, forward-thinking strategies that enhance energy system infrastructure in urban areas, ensuring that they are not only sustainable and flexible but also fair and responsive to the needs of all community members. The PhD candidate will have a Mechanical or Electric Power Engineering qualification, utility industry or energy systems engineering experience, aptitude for modelling, and passion for energy systems transition engineering. Candidates who are systems thinkers are preferred.

 

This PhD project is advertised as a part of the Edinburgh Research Partnership in Engineering, a joint partnership between the University of Edinburgh and Heriot-Watt University. The successful candidate will be supervised by a team consisting of academics from the University of Edinburgh and Heriot-Watt University.

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree. Further information on English language requirements for EU/Overseas applicants.

Essential background: 

  • 2.1 or above (or equivalent) in Engineering, Mathematics, Physics, Energy Engineering/Economics, Informatics, or similar
  • Programming in Python, Julia or other high-level language

Desirable background:

  • Energy system modelling and optimisation
  • Experience in energy systems transition engineering
  • Data analysis, optimisation and/or machine learning
  • Experience in energy system modelling

Applications are welcomed from self-funded students, or students who are applying for  scholarships from the University of Edinburgh or elsewhere

Further information and other funding options.

Off

Asphalt recycling gained prominence since the 1970s, partly initiated by the oil crisis influencing the availability of bitumen as binder material. Since then, recycled and reclaimed asphalt continued to be part of the mix used in road and pavements providing a cost effective and environmentally friendly option with a potential to decarbonising the industry. Recent examples of roads using recycled asphalt include: 50% recycled asphalt was used in paving a section of M25 between junctions 25 and 26 and a section of A388 Bournemouth Spur Road, Dorset was paved using all the old road materials.  

Rolled asphalt pavement comprises of different courses primarily the wearing, binder, base, subbase and capping layer. The degree of compaction determines the stiffness and strength of material along with its resistance to deformation and durability of the mixture. Compaction of the asphalt along with the binder results from the operation of the paving/construction equipment to impart systematic static, shearing and vibrational loads to achieve the required properties of each of the aforementioned course. The pavement is expected to withstand the design traffic load.  

In the drive towards net zero carbon emission, there is an urgent need to significantly increase the use of the 100% recyclable Recycled Asphalt Pavement (RAP) in pavement construction.  This poses significant challenges in the design and optimisation of the production and construction processes for which this current project seeks to address. For instance, is it possible to better characterise the RAP in terms of material properties to provide a more accurate initial assessment of its recycling readiness? Is it possible to match to assess, based on the RAP's material characteristics and the prevailing loading regimes, whether it would meet the required highway standards?  

The aim of the project is to develop a deeper understanding of the RAP pavement construction and establish an experimentally calibrated numerical model to predict the compaction mechanics of recycled asphalt pavements during construction as well as operational period. The model will integrate the mechanics at different length scales. Experimental programme will include time-resolved (4D) X-ray tomography to capture the micromechanics of the granular assembly.  

This PhD project is advertised as a part of the Edinburgh Research Partnership in Engineering, a joint partnership between the University of Edinburgh and Heriot-Watt University. The successful candidate will be supervised by a team consisting of academics from the University of Edinburgh and Heriot Watt University (HWU). The Heriot-Watt University supervisor for this project will be Dr Elma Charalampidou. Some of the experiments involving micro x-ray CT system will be undertaken at HWU.

The selection process is in two phases:

Stage 1: Interested candidates should contact Dr Amer Syed at Amer.Syed@ed.ac.uk by 7 February 2025 with their CV and a covering email. Potential candidates will be invited to an interview. Selected candidate will progress to Stage 2.

Stage 2: Selected candidate will complete a formal application to the University of Edinburgh by 12 February 2025. This application will be assessed by a panel for funding. Please note that this studentship attracts enhanced stipend, while the exact details yet to be finalised, for 2024, it was £21,400 per annum.

Home and overseas students are encouraged to apply.
 

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity. Please see details here: https://www.ed.ac.uk/equality-diversity 

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree. Further information on English language requirements for EU/Overseas applicants.

Tuition fees + stipend are available for Home/EU and International students.

Further information and other funding options.

Off

From sandcastles to powder metallurgy, granular materials are ubiquitous in engineering and natural environment.  Understanding their behaviour under a range of loading conditions is essential in ensuring the structural integrity of the granular system e.g., landslides, chemical/pharmaceutical applications such as compacted tablets, food processing etc.  

The mechanical response of a granular assembly depends on the interaction of the individual grains.  In most of the natural and engineering systems, this interaction is further complicated by the presence of fluids and temperature gradient resulting in convective mass transport. The thermomechanical behaviour of the granular assembly depends on the temperature/concentration gradient, viscosity of the fluid, variation in fluid saturation, compressibility of the fluid etc. The presence of fluid would also influence the relative motion of the particles, especially in case of particles with varying size and shapes, and directly contribute to the nature of compaction and flow of the granular assembly.  

The aim of the project is to develop a deeper understanding of the mechanics of granular assemblies subjected to convective mass transport and to formulate a multiscale multiphysics model to predict the thermomechanical behaviour of granular assemblies. The model will be developed and calibrated using high quality experimental data acquired at multiple length scales.  Custom designed experiments will be conducted in an x-ray CT environment to study the micromechanics of the underlying processes using time resolved x-ray tomography (in 4D).

There are four application areas for this project and the successful candidate would be able to select one of these areas.  

Geological/geophysical application:  Geothermal systems, particularly Enhanced Geothermal Systems where the energy from underground hot rock/fractured rock is used to generate electricity.  

Steel production: Porous coke in the granular assembly of the blast furnace charge provides energy, heat and gas required to reduce the iron ore. Improved design of the granular assembly has potential to minimise the CO2 emission in the steel making process.  

Recycled Asphalt Pavements: Reclaimed and recycled asphalt are used in road pavements providing a cost effective and environmentally friendly option with a potential in decarbonising the industry.  

Powder bed fusion, a metal additive manufacturing technique: The nature of granular assembly of metal powder bed informs the quality of the finished product.  

This PhD project is advertised as a part of the Edinburgh Research Partnership in Engineering, a joint partnership between the University of Edinburgh and Heriot-Watt University. The successful candidate will be supervised by a team consisting of academics from the University of Edinburgh and Heriot Watt University (HWU). The Heriot-Watt University supervisor for this project will be Dr Elma Charalampidou. Some of the experiments involving micro x-ray CT system will be undertaken at HWU.

The selection process is in two phases:

Stage 1: Interested candidates should contact Dr Amer Syed at Amer.Syed@ed.ac.uk by 7 February 2025 with their CV and a covering email. Potential candidates will be invited to an  interview. Selected candidate will progress to Stage 2.

Stage 2: Selected candidate will complete a formal application to the University of Edinburgh by 12 February 2025. This application will be assessed by a panel for funding. Please note that this studentship attracts enhanced stipend, while the exact details are yet to be finalised, for 2024, it was £21,400 per annum.

Home and overseas students are encouraged to apply.

The University of Edinburgh is committed to equality of opportunity for all its staff and students, and promotes a culture of inclusivity. Please see details here: https://www.ed.ac.uk/equality-diversity 

Minimum entry qualification - an Honours degree at 2:1 or above (or International equivalent) in a relevant science or engineering discipline, possibly supported by an MSc Degree. Further information on English language requirements for EU/Overseas applicants.

Tuition fees + stipend are available for Home/EU and International students.

Further information and other funding options.

Off